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Abstract

This work presents a survey of computational methods for adhesive contact focusing on general
continuum mechanical models for attractive interactions between solids that are suitable for
describing bonding and debonding of arbitrary bodies. The most general approach are local
models that can be applied irrespective of the geometry of the bodies. Two cases can be
distinguished: local material models governing the constitutive behavior of adhesives, and local
interface models governing adhesion and cohesion at interfaces in the form of traction-separation
laws. For both models various sub-categories are identified and described, and used to organize
the available literature that has contributed to their advancement. Due to their popularity
and importance, this survey also gives an overview of effective adhesion models that have been
formulated to characterize the global behavior of specific adhesion problems.

Keywords: bonding and debonding, cohesive zone modeling, contact mechanics, interfaces,
mechanical properties of adhesives, numerical analysis

1 Introduction

This survey pursues two aims: (1) to give an overview of the computational methods and the
underlying theoretical formulations for adhesion that have been considered in the literature,
and (2) to bring structure and classification into the huge range of modeling approaches. Both
aims are pursued from the modeling point of view.

There is a huge literature body on works related to computational adhesion, especially when
including computational cohesion, which is equivalent from the model standpoint. A search on
web of science3 generates more than 12.000 hits (as of October 2014). And this even misses
some of the important works, simply because they do not use those keywords. It is therefore
impossible to account for every single publication related to the subject and give a complete
overview of all related works. The aim of this survey is to rather give a complete overview of
the methods and approaches of computational adhesion with the following focus:

The focus is on computational models and not on analytical and experimental models. A re-
cent overview of theoretical and experimental approaches of the physics of adhesion is given by
Gerberich and Cordill (2006). Here, only selected theories are discussed that are relevant for
computations.

1email: sauer@aices.rwth-aachen.de
2This pdf is the personal version of an article whose final publication is available at www.sciencedirect.com
3https://webofknowledge.com; search = (computational OR numerical) AND (adhesion OR cohesion)
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The focus is on general models that apply to a large range of problems and not on specific
models that only apply to few problems, which are, for example, characterized by a special
geometry. The focus is thus placed on models that can be adapted to any kind of adhesion
mechanism and adherent geometry.
The focus is on continuum models that are typically valid above length scales of several nanome-
ters, while atomistic models and corresponding computations are not discussed in detail even
though there is much work in this field, e.g. see Landman et al. (1990) and citations thereof.
The focus is on the mechanical aspects of adhesion, but an overview of the modeling of thermal
effects as well as curing and aging is also discussed.
The focus is on adhesion in the sense of attractive forces between neighboring bodies, and not
in the sense of tangential sticking between bodies, as is sometimes considered in the literature,
e.g. see Mróz and Stupkiewicz (1998).
The focus is on adhesion of solids, while the adhesion of liquids is not discussed in great detail
here. However, the computational methods presented here in principle also apply to liquids.

Adhesion originates from various mechanisms. Some of these are only secondary or apparent
adhesion effects, since no attractive forces are present locally, but the mechanism still appears
adhesive on the global scale. The local modeling of apparent adhesion mechanisms thus does not
require an adhesion formulation. Only the global modeling does. The following six mechanism
can be distinguished (Comyn, 1997):

• Chemical adhesion, due to strong molecular bonds – like covalent and ionic bonds – or
due to weak hydrogen bonds. Chemical adhesion is only of short range, usually less than
one nanometer.

• Dispersive adhesion, due to van der Waals interaction. This is a quantum mechanical effect
of (momentary) polarity within molecules. It is of longer range, up to several nanometers.

• Electrostatic attraction, due to Coulomb interaction between oppositely charged bodies.
This interaction can easily extend beyond the centimeter range.

• Mechanical interlocking of the surfaces, e.g. for a nail in a wall. This is only apparent
adhesion since no local tensile interface forces exist, but only local compression and friction
forces.

• Diffusive adhesion, due to interlocking at the molecular level, e.g. of polymer chains. Also
this is only apparent adhesion.

• Suction. This is apparent adhesion since, physically, no tensile forces are present in the
interface. The bodies are rather pressed together by ambient atmospheric pressure.

Further details on the origins of molecular adhesion can be found in Israelachvili (1991). In
principle also gravitation and magnetism exert attractive forces. But those are (typically)
restricted to celestial length scales and special materials, respectively.

Adhesion plays an important, if not dominating, role in many applications. Examples are
debonding and delamination (Allix and Ladevèze, 1992; Point and Sacco, 1996a) – e.g. of
thin films (Hendrickx et al., 2005; Roy et al., 2007), peeling of adhesive strips (Kendall, 1975),
rubber adhesion (Johnson et al., 1971), adhesion by capillary bridges (Orr et al., 1975), flow and
aggregation of adhesive particles (Kendall et al., 2007; Liu et al., 2010; Li et al., 2011b), rough
surface adhesion (Persson et al., 2005) and bonding (Hunter et al., 2012), multiscale adhesion
modeling (Sauer, 2009b, 2014a; Eid et al., 2011a), adhesive bonding technology (Banea and
da Silva, 2009; He, 2011), MEMS and NEMS (Micro- and Nano-electromechanical systems)
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(Komvopoulos, 2003; Zhao et al., 2003), insect and lizard adhesion (Autumn and Peattie, 2002;
Arzt et al., 2003), climbing robots (Spenko et al., 2008), microfiber arrays (Yurdumakan et al.,
2005; Aksak et al., 2007; Ge et al., 2007; Kim et al., 2007; Schubert et al., 2007; Qu et al.,
2008), biomimetic and patterned adhesive surfaces (Ghatak et al., 2004; Gorb et al., 2007),
self-cleaning mechanisms (Blossey, 2003), biofouling (Tsang et al., 2006), membrane adhesion
(Lipowsky and Seifert, 1991; Andrews et al., 2003; Wan and Julien, 2009; Agrawal, 2011),
adhesion of cells (Zhu, 2000), and hemostatic platelet adhesion (Wang and King, 2012).

In order to structure this survey we distinguish between the following three modeling approaches
for adhesion:
(a) local material models that describe the material behavior within the adhesive (Sec.2),
(b) local interface models that describe the bonding behavior at the material interface (Sec.3),
and (c) global adhesion models that describe the effective adhesion behavior (Sec.4).
Fig. 1 shows a schematic overview of these three approaches. In all cases the adhesion behavior

a. b. c.

Figure 1: Classification of adhesion models: (a) local material models for adhesives; (b) local
interface models for adhesion; (c) effective adhesion models (e.g. for peeling).

is characterized by constitutive laws relating kinematic quantities – like displacements or strains
– to kinetic quantities – likes forces or stresses. In principle, an interface model is also required
for case (a) in order to describe the behavior at interfaces B1-Bi and Bi-B2. But for this, full
bonding may simply be assumed. On the other hand, interface models can also be obtained
from the projection of material models onto a surface – e.g. the interface between adherent and
adhesive. This is discussed further in Sec. 3.5.4. Effective adhesion models are essentially a
result of the local material and interface behavior, and they can be derived as such, see Sec. 4.
Dry adhesion (i.e. adhesiveless adhesion) – like van der Waals adhesion, electrostatic attrac-
tion, or mechanical interlocking – are natural candidates for interface models. Adhesive-based
adhesion – e.g. based on polymeric adhesives or capillary adhesion – are natural candidates for
material models.

Before discussing the different adhesion models, we provide a very brief overview of the governing
equations of continuum mechanics and their finite element discretization. Further details can
for example be found in Holzapfel (2000); Wriggers (2008). A mechanical body B has to satisfy
the equilibrium equation

divσ + f = ρa (1)

at all x ∈ B along with the boundary conditions

u = ū on ∂uB ,
t = t̄ on ∂tB ,

(2)

where ∂uB and ∂tB are the boundaries where displacements and tractions are prescribed. Here,
σ denotes the (Cauchy) stress tensor inside B, while t = σn denotes the traction vector at
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surfaces with normal vector n; f denotes distributed body forces, while ρ and a denote density
and acceleration. The latter is only needed within a dynamic analysis. In the static case, a = 0.
Eq. (1) is also know as the strong from of the equilibrium equation. It can be turned into the
weak form statement∑

I

[ ∫
BI
δu · ρadv +

∫
BI

grad δu : σ dv −
∫
BI
δu · f dv −

∫
ΓI

δu · tda

]
= 0 , (3)

which is valid for all functions δu, know as virtual displacements, that are kinematically ad-
missible. The summation is carried out over all bodies BI and interfaces ΓI in the system.
The corresponding volume and surface integrals denote the virtual work done on those volumes
and surfaces. In order to solve general problems in continuum mechanics – even for the linear
case – computational approaches are needed. The most widely used approach is the finite ele-
ment method (Zienkiewicz et al., 2005; Zienkiewicz and Taylor, 2005; Belytschko et al., 2000;
Wriggers, 2008). The finite element method finds approximate solutions satisfying weak form
(3). Given a discretization of the body and its surfaces into a set of elements and nodes, the
displacement field u(x) is approximated by the interpolation

uh(x) =
∑
A

NA(x)uA . (4)

where uA are the nodal displacements values, and NA denotes the interpolation (or shape)
function of node A. Standard shape functions are based on Lagrange polynomials, but in
recent years also shape functions based on Bézier splines have become popular (Cottrell et al.,
2009). Those can be conveniently incorporated into interpolation (4) using the Bézier extraction
operator technique (Borden et al., 2011; Scott et al., 2011). The discretization of weak form (3)
leads to a discretized equilibrium equation – in general non-linear – that is solved for all the
unknown nodal finite element displacements uA. In the case of dynamic problems, the solution
is obtained by time-stepping algorithms like Newmark’s method (Wriggers, 2008).

2 Local material models for adhesives

This section surveys mechanical constitutive models that describe the material behavior within
adhesives according to Fig 1a. Such models relate the stress tensor σ to the deformation of the
material. Elasticity, viscosity, plasticity, fracture, damage, thermal effects, curing, aging and
liquid bridges are discussed in the following.

2.1 Elasticity models

Elasticity describes reversible, rate-independent deformation. Corresponding models can be
linear or non-linear. In linear elasticity, the stress is given by (Timoshenko and Goodier, 1970)

σij = Cijk` εk` (5)

where Cijk` is the material tangent (a fourth order tensor) and

εk` =
1

2

(
∂uk
∂X`

+
∂u`
∂Xk

)
(6)

is the strain associated with small displacements u = u(X). The notation above uses in-
dex notation associated with Cartesian coordinates. In tensor notation the above expressions
become

σ = C : ε , ε =
1

2

(
Gradu+ (Gradu)T

)
, Gradu :=

∂u

∂X
. (7)
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In case of isotropy, C has the Cartesian components

Cijk` = λ δijδk` + µ (δikδj` + δi`δjk) , (8)

where λ =
2µν

1− 2ν
and µ =

E

2(1− ν)
are the bulk and shear moduli related to Young’s modulus

E and Poisson’s ratio ν. δij are the components of the identity tensor I. It follows that

σ = λ tr ε I + 2µ ε , (9)

or in Cartesian components
σij = λ εkk δij + 2µ εij , (10)

where tr ε = εkk = ε11 + ε22 + ε33.
For general non-linear elasticity the stress tensor is given as

σ = σ(F ) , (11)

where F is the deformation gradient that is related to the displacement gradient by

F = I + Gradu , (12)

where the displacement vector u = x−X, between deformed and undeformed structure, can now
become arbitrarily large. As a further generalization the stress may also be dependent on higher
deformations gradients like GradF , a formulation known as gradient elasticity. Formulation
(11) can capture both geometrical non-linearities (through F ) and non-linear material behavior
(through the function σ(F )) that are associated with large deformations. An important subset
of non-linear elasticity is hyperelasticity. In this case, elasticity is described by the stored
energy function W = W (F ). This setup follows from the consistency with the 2nd law of
thermodynamics. The stress tensor is then defined from the derivative of W with respect to F .
An example is the isotropic Neo-Hookean material model (Zienkiewicz and Taylor, 2005)

σ =
λ

J
ln J I +

µ

J

(
FF T − I

)
, (13)

or in components

σij =
λ

J
ln J δij +

µ

J

(
FikFjk − δij

)
, (14)

where J = detF denotes the volume change during deformation. Other examples are the
Mooney-Rivlin, Ogden and Arruda-Boyce material models (Ogden, 1987; Holzapfel, 2000).
The modeling introduced above describes purely elastic behavior and does not introduce mate-
rial degradation or failure. It is therefore straightforward to use in the finite element analysis of
adhesively bonded joints as long as the geometry is simple and no debonding occurs. The lin-
ear, isotropic elasticity analysis of such joints goes back to the works of Anderson et al. (1973)
and Adams and Peppiatt (1974). A more recent example is the work of Wu and Crocombe
(1996). An important aspect of elasticity is the emergence of stress singularities at corners and
material interfaces. Such singularities are for example studied in the work of Destuynder et al.
(1992) or recently by Zhao et al. (2011b,a). It is also possible to consider linear elasticity of
the material but account for geometrical non-linearites due to large deformations. Examples of
this approach include Crocombe and Adams (1981); Apalak and Engin (1997); Andruet et al.
(2001). An example for fully non-linear elasticity based on the Neo-Hookean model is given by
Lubowiecka et al. (2012). Adhesion problems with linear elastic material behavior can also be
studied by boundary element methods, e.g. see Salgado and Aliabadi (1998).
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The elastic material behavior of adhesives can also be characterized by constraints. A common
example is incompressibility, where ν = 0.5. Formally this constraint is written as

g(F ) := J − 1 = 0 . (15)

Rubber-like materials often exhibit such behavior. It is not advisable to use the models described
above with simply setting ν → 0.5 due to the numerical ill-conditioning that follows as λ→∞.
Special material models – along with corresponding computational formulations – have been
developed for incompressibility. An example is the incompressible Neo-Hookean material model

σ(F , p) = µFF T − p I , (16)

where p is the hydrostatic pressure field associated with constraint (15). This pressure is
now independent of the deformation and thus needs to be included as an unknown within the
numerical formulation. It then follows from the equilibrium equations and boundary conditions
(Holzapfel, 2000).
Even though elastic material behavior is rate-independent, it can still be used within a dynamic
analysis. In that case, the moving material also contributes inertial forces that are proportional
to the material density and acceleration, and need to be accounted for in Eq. (1). Purely elastic
materials are energy conserving and do not dissipate any energy over time. In order to account
for material dissipation, viscosity or plasticity models are needed.

2.2 Viscosity and visco-elasiticity models

Viscosity is a major property of fluids. Visco-elasticity describes rate-dependent, delayed elas-
ticity. Both can be described by simple rheological models combining elastic springs and viscous
dash-pots that are shown in Fig. 2. The Maxwell element describes fluid-like behavior. The

a. b. c.

Figure 2: Viscous material models: (a) Maxwell element; (b) Kelvin element; (c) Generalized
Solid.

deformation is composed of the elastic deformation in the spring and the inelastic deformation
in the dash-pot, i.e.

ε = εel + εin . (17)

The stress in spring and dash-pot is equal and given as

σ = E εel = η ε̇in . (18)

The Kelvin element describes solid-like behavior. Here the strain is equal,

ε = εel = εin , (19)

while the stresses are added,
σ = E εel + η ε̇in . (20)
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For a further discussion of these models and combination of them see for example Holzapfel
(2000) and Sancaktar (2011). These models can also be extended to 3D by replacing the 1D
stress and strain by their 3D tensorial counterparts. The elastic part can then be modeled by
any of the models discussed in the preceding section. A popular model for 3D viscosity is a
Newtonian fluid given by

σ = 2ηD , (21)

where

D =
1

2

(
gradv + (gradv)T

)
, gradv :=

∂v

∂x
, (22)

is the symmetrized velocity gradient.
An important combination is the generalized solid model, where a spring is considered in
parallel to one (or several) Maxwell elements (see Fig. 2c). The single spring describes the
elastic response at (thermodynamic) equilibrium, while the Maxwell element(s) describes non-
equilibrated states. Like in the Kelvin element the corresponding stresses are added,

σ = σeq + σneq , (23)

while the strains, equal in all parallel elements, are added within each Maxwell element,

ε = εel + εin . (24)

In the 1D setting we have σeq = E∞ ε and σneq = E εel = η ε̇in. The formulation can be extended
to the non-linear setting considering both non-linear behavior of the elastic and viscous parts.
Instead of the additive decomposition (24), it is then customary to consider a multiplicative
decomposition of the deformation gradient, as

F = F el F in . (25)

The inelastic strains (εin or F in) are viewed as internal variables, which track microstructural
changes in the material that are not observable from the outside. An additional law is needed
to describe the evolution of these internal variables. For further details see Holzapfel (2000).
It is noted that viscosity is usually temperature dependant, e.g. see (Sancaktar, 2011). It is
also noted that viscosity leads to energy dissipation in the system. However, the presence of
dissipation in the system does not imply that the adhesive is dissipative. Dissipation can also
occur in the adherents. Further properties of viscous materials are also discussed in Dillard
(2011).
The three-parameter linear visco-elasticity model of Fig. 2.c has been applied to study joints
by Yadagiri et al. (1987). The linear visco-elastic Kelvin model has been used to study bonded
connections by Carpenter (1990). A Newtonian fluid model has been used in Lin et al. (2002)
to model fibril behavior in debonding. Simple linear visco-elasticity models for the adherents
have also been used in combination with van der Waals interaction to study gecko adhesion by
Sauer (2010) and Tang and Soh (2011). It seems, that so far the use of non-linear viscous and
visco-elastic models has not been applied to adhesion.

2.3 Plasticity and damage models

Plasticity and damage describe irreversible changes during deformation. Rheologically this can
be described by slider elements that open up once the stress reaches a limit value σy, the so
called yield stress. Examples are shown in Fig. 3. Mathematically, the two cases are described
by

ε = εel + εin , (26)
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a. b.

Figure 3: Plasticity models: (a) plastic loading and unloading; (b) linear hardening and soften-
ing.

and
σ = E εel , σ ≤ σy +H εin , (27)

where now εin denote the plastic strains that remain in the material after unloading, and where
H models hardening during plastic deformation. H = 0 corresponds to the behavior in Fig. 3a.
The limit equation on σ is also know as the yield criterion. A typical example in 3D is the von
Mises yield criterion (Simo and Hughes, 1998)

f := ‖s‖ −
√

2
3 σy ≤ 0 , (28)

where s is the deviatoric part of the stress tensor σ and ‖s‖ :=
√
s : s denotes the tensor norm.

Based on this, the distinction
f < 0 elastic state

f = 0 plastic state
(29)

is made. In the non-linear setting, the additive strain decomposition is usually replaced by a
multiplicative split as in Eq. (25).
In this framework, also damage can be modeled, considering material softening (for H < 0)
due to material degradation. Such a process is often driven by cyclic loading (i.e. fatigue).
Alternatively, damage can also be modeled by local fracture, as is discussed in the following
section. A further overview of rheological damage models for adhesives is given in Sancaktar
(2011). An overview of general computational approaches is given in Simo and Hughes (1998).
Linear elasto-plastic adhesive behavior is considered in Edlund and Klarbring (1990). In that
work the deformation behavior of the adhesive is simplified such that it can be treated com-
putationally as a flat interface (in a similar manner as contact). The work is later extended
to non-linear elasticity (Edlund and Klarbring, 1992) and to account for damage (Edlund and
Klarbring, 1993; Edlund, 1994; Schmidt and Edlund, 2006). The last reference is based on the
asymptotic expansion technique of Klarbring (1991) and Klarbring and Movchan (1998). In
later work, also visco-plasticity is considered as a numerical regularization technique (Schmidt
and Edlund, 2010). In Cui et al. (2003) the authors consider von-Mises plasticity to model adhe-
sive failure during peeling. Plasticity can also be considered in the context of interface models,
see Sec. 3.3 below. An example is the work of Créac’hcadec et al. (2008) and Créac’hcadec and
Cognard (2009).
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2.4 Fracture models

Fracture mechanics describes local material damage and failure due to the appearance of cracks.
Cracks imply that new surfaces are created and the topology of the body thus changes. The
fracturing process can be brittle or ductile. Cracks can appear in the adhesive and adherents,
or between the two. In the latter case one speaks of debonding between adhesive and adherent,
which can also be treated by interface models (see Sec. 3). In the following, the two most
common computational finite element (FE) approaches to fracture are described briefly. Those
are cohesive zone models (CZM) and extended finite element methods (XFEM). CZM introduce
interface laws between elements that allow for possible separation of the elements. They are
fairly easy to implement, but introduce a FE mesh dependency of the crack path. They are
therefore ideal for failure along a predefined crack path, e.g. for failure along a known interface.
CZM are therefore commonly used in the context of interface models, discussed in detail in the
following section (see Sec. 3). An application of CZM to study fracture within the adhesive
layer is considered by Martiny et al. (2008).
XFEM circumvent the problem of mesh dependency, but they are much more difficult to imple-
ment, especially in 3D. The basic idea is to enrich the numerical solution at the crack tip, for
example with the solutions known from analytical fracture mechanics. Interpolation (4) then
takes the form

uh(x) =
∑
A

NA(x)uA +
∑
A

N̂A(x)ψ(x) qA , (30)

where N̂A are standard FE shape functions, possibly identical to NA, ψ(x) is the enrichment,
and qA are additional nodal unknows associated with the enrichment. The approach goes back
to Moës et al. (1999). An overview of further developments is reported in Belytschko et al.
(2009) and Fries and Belytschko (2010). An application to the failure of adhesives is considered
in Campilho et al. (2011).

2.5 Thermo-mechanical models

Thermo-mechanical models describe the coupling between thermal and mechanical behavior,
i.e. they capture the dependence of deformation (and stress) on temperature, and the depen-
dence of temperature on deformation and stress. To capture those, the mechanical equilib-
rium equations need to be coupled with the energy balance (the first law of thermodynamics).
Further, the mechanical material models describing elasticity, viscosity and plasticity become
temperature dependent in general, while the thermal material model describing conductivity
becomes deformation dependent. The framework of such models is discussed by Holzapfel
(2000) in the general context of large deformations. A simplified approach is to disregard the
influence of deformation on temperature and to account for additive thermal strains due to the
temperature increase ∆T as

ε = εel + εtemp , εtemp = αT ∆T I , (31)

where αT is the thermal coefficient of expansion. For linear elasticity, the resulting stresses then
follow from Hooke’s law, σ = C : εel. In the nonlinear setting the additive strain decomposition
should again be replaced by a multiplicative split, e.g. in the form

F = F el F temp , F temp = (1 + αT ∆T ) I . (32)

The elastic stresses then follow from a model like Eq. (13) using F el as the functional argument.
Like in the linear case, this model does not account for the full thermo-mechanical coupling.
Some of the thermal properties of adhesives are discussed in Comyn (2011). Computational
examples of thermo-mechanical analysis of adhesive joints can be found in He (2011).
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2.6 Curing models

Curing describes the chemical cross-linking of polymer chains. These chains form the chemical
structure of most industrial adhesives. For rubbers, the curing process is usually referred to
as vulcanization. Curing is often facilitated by heat, UV light, or chemical additives. It leads
to a change of the material properties of the adhesive, usually transforming the adhesive from
a viscous liquid into a visco-elastic solid. During curing, thermal expansion and in particular
chemical shrinkage4 of the material can occur, leading to residual stress states. Correspond-
ing models have been considered by White and Hahn (1992) and Adolf and Martin (1996).
Thermodynamically derived computational curing models for finite deformations have been for-
mulated recently by Lion and Höfer (2007) and Hossain et al. (2009, 2010). The modeling
has also been extended to account for the damage due to curing shrinkage (Mergheim et al.,
2012). A computational formulation that aims to model rubber vulcanization and its coupling
with thermo-mechanics is given in André and Wriggers (2005). A challenge in formulating gen-
eral non-linear material models is the experimental difficulty to properly characterize the full
range of the material behavior. This calls for more experiments. A recent overview of some
experimental curing data is provided in Comyn (2011), Sancaktar (2011) and Yu et al. (2013).

2.7 Ageing models

Ageing describes the change – usually degradation – of material properties over time, and it thus
affects the durability of adhesive bonds. Like curing, ageing is often affected by temperature,
humidity, light or chemical agents. Strong and stiff materials can thus become weak and soft
over time. In the case of adhesives, the cross-linking of polymer chains can decrease so much
that the material becomes soft, perhaps even liquid. On the other hand, the cross-linking can
also increase over time, e.g. due to long-term UV light exposure, making the material too brittle.
The effect of ageing on the mechanics of adhesive joints due to moisture is considered in the
FE studies of Loh et al. (2003) and Liljedahl et al. (2005). Further works can be found in the
review by He (2011). An overview of the modeling of moisture diffusion into adhesives and its
effect on adhesive joints is discussed in Ashcroft and Comyn (2011), Comyn (2013), Ashcroft
and Crocombe (2013) and Crocombe and Ashcroft (2013). Diffusion is commonly described by
Fick’s laws (Comyn, 2013). In general, diffusion and deformation can be fully coupled such that
diffusion depends on deformation and deformation depends on diffusion. In this case one has
to combine the equilibrium Eq. (1) with the advection-diffusion equation stemming from mass
balance. Like for curing, a challenge in the modeling of ageing is the experimental complexity
required to assess the full range of general non-linear material models. On the other hand,
an advantage in the modeling of ageing is the temporal scale separation between mechanical
motion and ageing: The former usually varies much faster than the latter, allowing to decouple
the two processes.
Related to ageing is the phenomenon of fatigue due to cyclic loading. Various models exist in the
context of fatigue to describe the ensuing material degradation (Suresh, 1998). The influence of
fatigue on adhesive joints is discussed in Ashcroft (2011) and Crocombe and Ashcroft (2013).
Fatigue induces microscopic damage that can be modeled according to Sec. 2.3.

4A simple model for shrinkage and swelling due to concentrational changes ∆c, is given by model (31), or (32)
respectively, when ∆T is replaced by ∆c. αT then plays the role of the swelling coefficient.
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2.8 Capillary adhesion models

Liquids form menisci that exert capillary forces at interfaces. An example is a liquid bridge
between two solids. The capillary forces of the liquid bridge provide adhesion between the
solids. The surface tension of the capillary bridge effectively pulls the two bodies together. In
the following, we discuss explicit models for liquid bridges; effective interface models due to
liquid bridges are discussed in Sec. 4 below. Liquid bridges can be modeled explicitly based on
the membrane equations governing the surface shape of the liquid bridge. In case of liquids with
constant, isotropic surface tension the surface shape is governed by the Young-Laplace equation

2Hγ + p = 0 , (33)

where 2H is the mean curvature of the surface and p is the pressure difference across the surface.
A contact angle forms at the contact line where the liquid bridge connects with the solid. This
angle is governed by the surface tensions of the three interfaces: liquid-gas, liquid-solid and
solid-gas. If the solid is soft, a wetting ridge can be observed at the contact line (Sauer, 2014b).
For liquid bridges, the Young-Laplace equation replaces equilibrium equation (1).
The analytical solution of (33) for axisymmetric liquid bridges for negligible gravity (i.e. con-
stant p) is provided by Orr et al. (1975). Numerical integration of (33) for axisymmetric menisci
is discussed for example in Padday (1971). More general cases can be analyzed by finite element
methods (Brown et al., 1980) and energy minimization methods (Brakke, 1992; Iliev, 1995). In
Sauer (2014c) a new and very general finite element formulation is developed for liquid films,
in order to analyze capillary forces. An example is shown in Fig. 4. At small length scales, the

a. b. c. d.

Figure 4: Finite element analysis of a liquid bridge for different contact angles (Sauer, 2014c)

relative humidity has a strong influence on capillary forces (Pakarinen et al., 2005). A recent
survey of capillary forces between flat and spherical surfaces – accounting also for the viscous
forces from the fluid flow – is given by Cai and Bhushan (2008).

3 Local interface models for adhesion

This section surveys mechanical constitutive models that describe the interface behavior between
adherents according to Fig 1b. Such models relate the interface traction t to the separation of
the two surfaces.

Interface adhesion is closely related to interface contact. In some sense adhesion corresponds to
‘the other side of contact’ – describing the interaction of solids as they are pulled apart instead
of pushed together. A survey of contact formulations and corresponding computational models
has been provided recently by Zmitrowicz (2010). Comprehensive background information on
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computational contact formulations can be found in the monographs of Laursen (2002) and
Wriggers (2006).

3.1 Theoretical description of local interface interactions

In a general sense all mechanical interface models can be associated with traction-separation
laws that relate the local interface traction t to the pointwise surface separation g, also referred
to as the gap vector or displacement jump. According to Fig. 5, the surface separation of point

Figure 5: Separation kinematics: Definition of the gap vectors g and gn between surfaces ∂B1

and ∂B2 at point x ∈ ∂B1 that is initially located at X ∈ ∂B01.

X can be defined as
g(X) = x− x0

p , (34)

with
x = ϕ1(X) , x0

p = ϕ2(Xp) . (35)

Here ϕ1 and ϕ2 denote the deformation maps between undeformed and deformed surface con-
figurations, and Xp denotes the neighbor to X in the undeformed configuration. Thus x0

p is the
current location of the initial interaction point Xp. In general, Xp is computed from a closest
point projection of X onto the neighboring surface, e.g. see Wriggers (2006). In the same way,
the point xp can be obtained from x. Some traction-separation laws are formulated in terms of
the normal gap

gn(X) = x− xp , (36)

i.e. the interaction takes place between x and xp, and not between x and x0
p. An example is

van der Waals adhesion (see below).
A simple traction-separation law is the tri-linear model (Tvergaard and Hutchinson, 1992)

t(g) = − ḡ ×


t0
g

g0
if 0 ≤ g < g0 ,

t0 if g0 ≤ g ≤ g1 ,

t0
g − g2

g1 − g2
if g1 < g < g2 ,

0 if g2 ≤ g .

(37)

Here ḡ := g/‖g‖ denotes the direction and g := ‖g‖ the magnitude of g, while t0, g1 and g2

are model parameters. A visualization of (37) is shown in Fig. 6a. Special cases are obtained
for g0 = 0 and/or g1 = g0. The model is both suitable for normal and tangential debonding.
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a. b.

Figure 6: Traction-separation models: (a) Tri-linear model (37) for g1 = 3g0 and g2 = 5g0;
(b) Exponential model (38). φ(g) denotes the separation energy up to g (= 2g0, here).

It is also possible to formulate separate laws (with separate parameters) for the normal and
tangential components of the traction. Such an approach can be useful in order to distinguish
between normal and tangential debonding behavior.
If the gap closes, contact can occur. In that case, law (37) is not suitable anymore and should
be replaced by contact and friction models. The kinematical framework presented above is also
suitable to describe contact, so that CZM and contact models can be combined. Therefore
it is helpful to formulate contact by allowing a penetration to occur. This is the case when
gn · np < 0, where np is the outward surface normal at xp (see Fig. 5).
Another example is the exponential model

t(g) = − t0
g0

exp
(

1− g

g0

)
g , (38)

which is a special case of the cohesive zone model of Xu and Needleman (1993). A visualization
of (38) is shown in Fig. 6b. A clear advantage of (38) over (37) is that it is differentiable for all
values of g.
A third example is the traction-separation law for van der Waals adhesion,

t(gn) =
AH

2πg3
0

[
1

45

(g0

gn

)9
− 1

3

(g0

gn

)3
]
np , for gn := ‖gn‖ > 0 , (39)

were g0 denotes the atomic equilibrium spacing and AH denotes Hamaker’s constant. Quali-
tatively, law (39) looks like law (38) shown in Fig. 6b. Eq. (39) is obtained from analytical
integration of the Lennard-Jones potential over body B2, e.g. see Sauer and Wriggers (2009).
This integration is based on certain assumptions on the deformation (see also Sec. 3.5.2) that
may not be satisfied in general. In general, numerical integration of the Lennard-Jones potential
needs be considered (Sauer and Li, 2007b).
All the laws specified above can be derived from a potential φ. The values φ(g) and φ(gn)
denote the separation work (per unit surface area) up to distances g and gn. They correspond
to the area beneath the traction-separation curve as shown in Fig. 6. The total area under the
curves (up to g = gn = ∞) then corresponds to the specific work of adhesion (or cohesion,
respectively), denoted wadh.
There are only few cases that can be treated by analytical solution techniques – then typically
in the framework of linear fracture mechanics (Gross and Seelig, 2006). In the general case, the
setup is too complex to solve analytically – often due to nonlinearities arising from the geometry
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(like the kinematics in Fig. 5) or the material behavior of the bulk (see Sec. 2) and interface (as
in Eqs. (37)–(39)) – such that computational solution techniques are needed. The most widely
used techniques are finite element methods based on Eq. (3). However, traction-separation laws
can also be used in the context of boundary element methods (Nesemann and Stephan, 2012).
The last two examples, Eqs. (38) and (39), show that traction-separation models can also
account for long-range interaction as g becomes large. Other such examples are electrostatic
and gravitational interactions, which can be cast into same framework (Sauer and De Lorenzis,
2013). The case of long-range interactions is not trivial, since the interaction kinematics illus-
trated in Fig. 5 can become tricky to evaluate in this case. Sauer and De Lorenzis (2013) also
report a general finite element formulation for the presented interface models.

It is important to note that the debonding and the bonding process can be inherently unstable
(Yao and Gao, 2006; Sauer, 2006, 2011a). The process is known as jump-off-contact and jump-
to-contact. It can be illustrated from the simple model system shown in Fig. 7a. Here φ

a. b.

Figure 7: Debonding instability (Sauer, 2006, 2011a): (a) 1D model system, (b) resulting
debonding behavior, which becomes unstable for k < kcr (dashed line).

represents the bonding potential and k the stiffness of the adherents and their support. If k
falls below a critical value kcr the bonding potential overpowers the support, leading to an
unstable load displacement curve P (u). During a loading cycle, a hysteresis then appears, and
the energy enclosed by the loading cycle is usually dissipated. Due to surface roughness many
such jumps can occur (Guduru, 2007; Kesari and Lew, 2011).

Even when there is no physical instability present, the corresponding computational formulation
can still become unstable if the finite element discretization is too coarse (Crisfield and Alfano,
2002; Sauer, 2011b). Essentially, the FE discretization needs to be sufficiently fine in order to
capture the separation law properly. An efficient way to achieve this, is to enrich the surface
discretization such as is considered by Crisfield and Alfano (2002); Guiamatsia et al. (2009);
Samimi et al. (2009); Sauer (2011b, 2013); Corbett and Sauer (2014, 2015); Stapleton et al.
(2014).

It is useful to classify interface models according to the following four sections:

3.2 Treatment of adherents

The mechanical behavior of the adherent surfaces can be modeled by a range of different ap-
proaches. They can be considered rigid, as elastic foundations (Johnson, 1985), elastic half-
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spaces (Johnson, 1985), linear continua (Timoshenko and Goodier, 1970), or general, non-linear
continua (Holzapfel, 2000) that are characterized by the material behavior outlined in Sec. 2.
In principle they can also be modeled by atomistic approaches. In this case the interface inter-
actions are governed by molecular bonds. Instead of surface tractions, we now have interaction
forces acting on the individual surface atoms. Examples are given in Landman et al. (1990);
Yongsheng et al. (1999); Yong et al. (2004); Luan and Robbins (2006); Yang et al. (2006); Gi-
labert et al. (2007); Sauer and Li (2008); Peri and Cetinkaya (2009) and Schmidt et al. (2014).
Another aspect is the surface roughness. How it is accounted for? As an effective roughness
parameter – like the root mean square roughness (Persson et al., 2005) – or explicitly, as for
example in the simulations of Sauer and Holl (2013)?

3.3 Reversibility of interactions

What happens when the loading is reversed and the surfaces approach each other? Do we follow
the same path as during loading (shown in Fig. 6), or is there a different path for unloading?
If unloading follows the same path as loading, then the model is reversible and no energy is lost
during cyclic loading. Consequently the traction-separation law can be derived from a potential.
An example is the Lennard-Jones potential commonly used for van der Waals interactions. If
unloading follows a different path, i.e. if the debonding is irreversible, energy is dissipated and
associated with a degradation of the interface bonding. The setting is analogous to the damage
modeling considered in the bulk, see Sec. 2.3 and Fig. 3a. Irreversible traction-separation models
have been considered by Camacho and Ortiz (1996); Ortiz and Pandolfi (1999); Raous et al.
(1999); Roe and Siegmund (2003); Feng et al. (2009); Del Piero and Raous (2010); Schmidt and
Edlund (2010), among others. As the gap g approaches zero (and in some models even becomes
negative), classical contact – with compressive traction – occurs. In order to handle this case, a
contact formulation is required, e.g. such as discussed by Laursen (2002) and Wriggers (2006).

3.4 Static vs. transient interface models

The debonding behavior may be static or dynamic. But even dynamic debonding behavior may
only be an effect of the transient behavior of the adherents rather than any transient behavior of
the interface model, such that in this case static bonding models of the form t = t(g) are suffi-
cient. On the other hand, many adhesives are visco-elastic polymers that show time-dependent
and thus dissipative behavior. The traction-separation law then takes the form t = t(g, ġ). Such
models can be constructed by extending the models described above similarly to the extension
considered for bulk materials (see Sec. 2.2). A formulation for time-dependent debonding has
been provided by Fremond (1988), see also Sec. 3.5.1. A corresponding computational formu-
lation is given by Raous et al. (1999). Another approach is the viscoelastic debonding law by
Elmukashfi and Kroon (2014) that is based on the Kelvin element (see Fig. 2b). For a full
dynamic analysis of time-dependent adhesion, also inertia needs to be accounted for. Inertia is
usually only a property of the bulk material and not of the interface, as the interface is mass-
less. Bulk inertia is accounted for in Eq. (1). However, if the interface replaces a (thin) layer
of adhesive, it contributes inertia that should also be accounted for – either in Eq. (1) or by
considering an interface model of the form t = t(g, ġ,a).

3.5 Origin of interactions

The interaction laws can have various origins. In the following we distinguish between five
different cases. These are related to the way interface laws can be determined. There are two
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basic approaches for this: top-down approaches based on experiments – discussed in Sec. 3.5.1
– and bottom-up approaches based on underlying mechanisms – discussed in Secs. 3.5.2–3.5.5.

3.5.1 Phenomenological traction-separation laws

Phenomenological traction-separation laws are laws that are usually determined from macro
scale debonding experiments. Such laws are widely used. They are prominently known as
cohesive zone models (CZM), see e.g. Tvergaard (1990); Tvergaard and Hutchinson (1992);
Xu and Needleman (1993); Camacho and Ortiz (1996); van den Bosch et al. (2006). But
they are sometimes also referred to as bond-slip models, e.g. see Eligehausen et al. (1983) and
references thereof. There is also a recent review article on cohesive zone models (Liu and
Zheng, 2010). CZM are mostly used for debonding, but they can also describe bonding (see
Sec. 3.3). The experimental determination of cohesive zone parameters for adhesives is for
example considered in Sørensen (2002); Andersson and Stigh (2004); Andersson and Biel (2006);
Leffler et al. (2007); Ouyang and Li (2009); Ji et al. (2011); de Moura et al. (2012); Fernandes
et al. (2013). In experiments, the loading rate can have a strong effect on the results. This
implies that dissipation is present in the bulk (i.e. due to mechanisms described in Sec. 2.2–2.4)
and/or in the interface (addressed in Sec. 3.3). In order to match computational results with
experimental results, so-called inverse methods can be used. Those solve Eqns. (1)-(3) for the
unknown material parameters given the deformation.

Phenomenological traction-separation laws have been considered in a huge range of different ap-
plications. For example, to simulate and study blood clotting (Fogelson, 1984), fiber debonding
(Tvergaard, 1990), fracture mechanics (Tvergaard and Hutchinson, 1992; Camacho and Ortiz,
1996; Ortiz and Pandolfi, 1999), elasto-plastic peeling (Wei and Hutchinson, 1998; Yang et al.,
1999), sandwich beams (Kaziolas et al., 2000), debonding of visco-elastic polymers (Rahulku-
mar et al., 2000), mixed-mode delamination (Borg et al., 2002), rate dependent peeling (Lin
et al., 2002), interface fracture (Roe and Siegmund, 2003), coupled adhesion and friction (Talon
and Curnier, 2003), adhesive contact between elasto-plastic solids (Li and Yu, 2004), elasto-
plastic debonding (Su et al., 2004), dynamic thin film delamination (Hendrickx et al., 2005;
Tran et al., 2008), focal cell adhesion (McGarry et al., 2005), the aggregation of cells (Arm-
strong et al., 2006), mode I debonding of elastic bodies (Kočvara et al., 2006), mixed-mode
debonding (Li et al., 2006), microcrack decohesion (Carpinteri et al., 2008), thin film buck-
ling (Gruttmann and Pham, 2008), multiscale modeling of cohesive failure (Matous et al.,
2008), powder cohesion (Luding, 2008), debonding with mixed finite elements (Lorentz, 2008),
mixed-mode debonding of reinforcement sheets (De Lorenzis and Zavarise, 2008), membrane
adhesion (Zhang and Wang, 2008; Zhang et al., 2009), non-associated visco-plasticity of adhe-
sives (Créac’hcadec and Cognard, 2009), adhesive impact of spheres accounting for hysteresis
(Feng et al., 2009), bond degradation due to humidity and thermal effects (Zhang et al., 2010),
debonding of lap joints (Campilho et al., 2011), adhesion of surfaces covered with micro-columns
(Lin and Wu, 2012), mixed-mode debonding of DCBs (double cantilever beams) (Sauer, 2013;
Stapleton et al., 2014), bonding in metal forming (Bambach et al., 2014), and fibrillation in
delamination (Vossen et al., 2014). Phenomenological traction-separation laws have also been
applied in the context of isogeometric analysis (Verhoosel et al., 2011; Corbett and Sauer, 2014,
2015; Dimitri et al., 2014), and they have been adapted to develop new time integration methods
for adhesion and debonding (Gautam and Sauer, 2013, 2014).

Another approach, introduced by Fremond (1988), is to model adhesion and debonding by the
phenomenological bonding function β – a surface state variable also called intensity of adhesion
– that is governed by a temporal ODE. The traction-separation behavior is then governed
by the evolution of β and is generally time-dependent. The formulation can thus be used to
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model viscous debonding. The approach can also be combined with sliding friction (Raous
et al., 1999) and damage modeling (Del Piero and Raous, 2010). The adhesion formulation of
Fremond (1988) has been applied to simulate and study beam and plate delamination (Point
and Sacco, 1996a,b), bone-implant bonding (Rojek and Telega, 1999, 2001; Rojek et al., 2001),
beam contact (Han et al., 2002), membrane adhesion (Andrews et al., 2003), adhesion of visco-
elastic bodies (Chau et al., 2003; Fernández et al., 2003; Cocou et al., 2010), plate contact
(Ahn, 2008) and rubber friction (Wriggers and Reinelt, 2009). The mathematical aspects of the
adhesion formulation of Fremond (1988) have been pursued further in the works of Cocou and
Rocca (2000); Sofonea et al. (2006b,a); Touzaline (2010), and Bonetti et al. (2008, 2009, 2012).

The distance at which the traction according to laws like (37), (38) or (39) decays to zero
may be very small, so that in this case, separation is often modeled by disregarding the actual
traction-separation law but accounting instead only for the (total bonding) energy change (i.e.
release or storage) due to debonding and bonding, which is given by wadh. The relation between
phenomenological traction-separation laws and energy release is for example discussed in Diehl
(2008). An overview of the related approaches in fracture mechanics can be found in Lane
(2003) and Gross and Seelig (2006). In the context of adhesion, such approaches have been
e.g. considered for thin film peeling (Kendall, 1975), particle adhesion (Quesnel and Rimai,
2000), membrane adhesion (Lipowsky and Seifert, 1991; Nadler and Tang, 2008; Long et al.,
2010; Long and Hui, 2012) and rough surface adhesion (Carbone et al., 2009). A related ap-
proach, that also does not use the actual surface separation, but considers an adhesion potential
based on phase field functions is given in Gu et al. (2014).

Fig. 8 shows a 3D example based on a phenomenological traction-separation law: The debonding
between a thin strip peeled from a flat plate (Corbett and Sauer, 2015). The simulation is based
on model (38). A crucial aspect is such simulations is that the FE discretization needs to be
sufficiently fine in order to capture the separation law properly. Otherwise the formulation can
become numerically unstable (Crisfield and Alfano, 2002; Sauer, 2011b). This comes on top of
physical instabilities inherent to debonding (see above). In the present case the largest element
size is as big as 25g0, and the simulation will fail for a standard linear interpolation (blue
curve), whereas it runs through for the enriched FE technique proposed in Corbett and Sauer
(2015) (red curve). The example of Fig. 8 also shows that it is not necessary to use conforming
surface meshes within the interface. In a general FE implementation of traction-separation
laws, arbitrary surface meshes can be considered.

3.5.2 Molecular models for adhesion

Traction-separation laws can also originate from molecular adhesion. The most popular example
is van der Waals adhesion, which is typically based on the Lennard-Jones potential. The attrac-
tion between the individual molecules of neighboring bodies can sum up to significant adhesion
forces between the bodies. In the continuum limit this summation becomes an integration over
the two bodies. In case of the Lennard-Jones potential

φ(g) =
A

g12
− B

g6
, (40)

where A and B are model parameters, this integration gives the global interaction potential

Π =

∫
B1

∫
B2
ρ1 ρ2 φ dv2 dv1 , (41)

where ρk (k = 1, 2) is the molecular density of body Bk. This integration can be evaluated
analytically – for rigid objects, like spheres (Bradley, 1932; Hamaker, 1937) and shells (Tadmor,
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Figure 8: Finite element computation of the debonding between a flexible strip and plate (Cor-
bett and Sauer, 2015): (a-d) deformation at displacement uz = 0, 3.2, 7.75, 15.5L0; (e) load-
displacement curve for various FE discretizations.

2001) – and numerically – for arbitrary objects considering small deformations (Argento et al.,
1997) or arbitrarily large deformations (Sauer and Li, 2007b). In principle, also other potentials
can be integrated (Li et al., 2011a). The general framework involves the numerical integration
over both bodies, which makes such a formulation very expensive. Therefore approximate
methods are interesting that bring down the computational cost while maintaining the accuracy
of the formulation. For certain deformations it is for example possible to transform the volume
integrals of (41) into surface integrals (Sauer and Wriggers, 2009).
In the case of the Lennard Jones potential (40), the gradient of Π yields the traction-separation
law given in (39). Such adhesion models have been essentially used in the numerical studies
by Tworzydlo et al. (1998); Suh et al. (2004); Liu et al. (2006); Du et al. (2007); Sauer and Li
(2007a); Kadin et al. (2008); Radhakrishnan and Mesarovic (2009); Sauer (2009b); Ardito et al.
(2010); Eid et al. (2011b); Zhang et al. (2011); Jin et al. (2011); Ono (2012). Those computations
often exploit approximations for the deformation or surface distance gn. The surface distance
can for example be approximated by taking it to be normal to the original tangent plane
between the neighboring bodies, instead of taking the actual normal projection np according to
Fig. 5. This has been considered by Tworzydlo et al. (1998); Liu et al. (2006); Du et al. (2007);
Kadin et al. (2008); Eid et al. (2011b); Zhang et al. (2011); Jin et al. (2011); Ono (2012). The
approach is analogous to Derjaguin’s approximation (Derjaguin, 1934; Israelachvili, 1991), which
restricts the formulation to objects with curvature radii that are much larger than the range of
interactions. Another simplification, sometimes considered in computations, is to approximately
collocate the interaction to the FE nodes (Kadin et al., 2008; Ardito et al., 2010), thus skipping
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the surface integration inherent to FE. Instead of the surface-based traction-separation law
(39), the Lennard-Jones potential can also be used within a body force-based separation law.
Examples are given in Cho and Park (2005), Sauer and Wriggers (2009), Bobji et al. (2010) and
Jayadeep et al. (2014a,b). The last two references apply the formulation to study the adhesive
impact of elastic rods and spheres, examining the apparent energy loss during impact.
The currently most general computational continuum formulation for van der Waals adhesion
accounting for the actual surface distance and general, arbitrary deformations is the finite
element formulation of Sauer and Li (2007b) and Sauer and Wriggers (2009). This formulation
can also be used in conjuction with other potentials, like the Morse potential (Zeng and Li, 2011).
It is also possible to unify the formulation for van der Waals adhesion and phenomenological
traction laws with classical computational contact formulations (Sauer and De Lorenzis, 2013).
Thus, the formulation can for example be used to study the normal and tangential debonding
behavior of gecko spatulae, as is shown in Fig. 9. The example illustrates that structural effects

Figure 9: Finite element computation of the debonding of a gecko spatula: top: normal peeling
(Sauer and Holl, 2013); bottom: tangential peeling (Sauer and Mergel, 2014). The black dots
in the load displacement curves on the right hand side mark the spatula configurations shown
on the left hand side. Due to symmetry, only half of the spatula is plotted. The color scale
shows the stress I1 = trσ in multiples of E = 2GPa.

lead to strong anisotropy in the maximum peeling forces – about 6.6 nN for normal peeling,
6.1 nN for tangential peeling to the right and 295 nN for tangential peeling to the left – even
though the molecular debonding model is fully isotropic.
Molecular potentials, like the Lennard-Jones potential, can also be used in molecular dynamics

19



(MD) simulations of adhesion, see for example Yongsheng et al. (1999); Gilabert et al. (2007);
Peri and Cetinkaya (2009); Schmidt et al. (2014). Another possibility is to use detailed MD
models in order to identify effective cohesive zone parameters for macro-scale applications.
Examples can be found in Namilae and Chandra (2005); Yamakov et al. (2006); Zhou et al.
(2009); Dandekar and Shin (2011); Krull and Yuan (2011); Paggi and Wriggers (2011); He and
Li (2012); Paliwal and Cherkaoui (2013).

3.5.3 Electro-static interactions

The formulation of Eq. (41) can also by applied to other kinds of interactions, like for example
electro-static interactions described by Coulomb’s potential

φ = c
q1 q2

g
, (42)

where c is Coulomb’s constant, and where qk is the electrical charge of volume element dvk.
Those interactions can be quite long-ranging compared to the dimensions of the interacting
bodies. Due to this, the full numerical integration of (41) must generally be considered. Corre-
sponding finite element implementations are described in Sauer and Li (2007b) and Sauer and
De Lorenzis (2013). Numerical examples for electro-static interactions are given in Shavezipur
et al. (2011) and Sauer and De Lorenzis (2013).

3.5.4 Projection of material models onto the interface

Another possibility to construct traction-separation laws is to take the material models outlined
in Sec. 2 and project them onto the interface. The 3D adhesive (with its 3D material law) is thus
transformed into a 2D surface interaction model. Generally, this transformation will lead to a
loss of some of the details of the original 3D model. The transformation is particularly useful
for thin adhesive layers where the full 3D deformation state is not of interest. The approach
has been considered in the work of Edlund and colleagues outlined in Sec. 2.3. It has also been
considered recently in the context of soil friction by Weissenfels (2013). In general one has
to integrate constitutive model σ = σ(ε) over the adhesive layer Bi to generate an effective
traction-separation law of the form t = t(g) (see Fig. 1). In the case of van der Waals adhesion
a corresponding approach is given by the surface formulation presented in Sauer and Wriggers
(2009).

3.5.5 Adhesive ligand-receptor binding of cells

Biological cell membranes contain proteins on the surface that can bond together. The inter-
actions of these ligand and receptor proteins are governed by a kinetic reaction equation that
models the formation and breaking of bonds. The interaction themselves are typical modeled
by a simple linear spring (Bell, 1978; Bell et al., 1984). Denoting the interaction potential by
φ, the total interaction energy of cell adhesion can be written as

Π =

∫
Γi

ρ φda , (43)

where ρ denotes the surface density of interactions on interface Γi. ρ is governed by a kinetic
reaction equation – an ordinary differential equation of the form

dρ

dt
= f(ρ) . (44)
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Models for cell adhesion have for example been considered by Tozeren et al. (1989); Agresar
(1996); N’Dri et al. (2003); Lin and Freund (2007); Liu et al. (2007); Pathak et al. (2008); Zhang
and Zhang (2008); Li et al. (2011b); Wong and Tang (2011); Farsad and Vernerey (2012); Wei
(2014). Further works can be found in the reference therein and in the review articles of Zhu
(2000) and Sanz-Herrera and Reina-Romo (2011).

4 Effective models based on homogenization

The local, i.e. pointwise, adherent and adhesive models discussed so far can be homogenized
into effective models describing the overall adhesion behavior of the entire system under inves-
tigation. The detailed interface and bulk relations t = t(g) and σ = σ(ε) are thus homogenized
into an effective debonding relation governing the debonding forces and displacements between
the adherents according to Fig. 1c. The procedure is essentially based on the integration (i.e.
averaging) of the local material and interface models over their domains of interaction. In many
cases – considering suitable approximations – this step can be evaluated analytically. Effec-
tive adhesion models can for example be used to construct hierarchical multiscale models for
adhesion (Sauer, 2009b; Eid et al., 2011a). The following four cases are considered:

4.1 Adhesive contact of deformable spheres

The classical example of effective models are the adhesion models for elastic spheres of Johnson
et al. (1971) and Derjaguin et al. (1975) – known as the JKR and DMT theories – that were
later combined by Maugis (1992). The models are based on Hertzian contact, which in turn is
based on the point load solution of half-space theory (Johnson, 1985), and on the concept of
the work of adhesion (see Sec. 3.1). They are thus theoretically restricted to small deformations
and small contact areas. But they can still come remarkably close to the full numerical solution
of the unapproximated theory as is shown in Fig. 10. Those calculations are based on a finite
element discretization of the general continuum problem considering Lennard-Jones interactions
(Sauer and Li, 2007b). There are also other numerical formulations that are still based on half-
space theory, e.g. see Muller et al. (1980); Attard and Parker (1992); Greenwood (1997); Feng
(2000); Wu (2006, 2008). Computational approaches have also been used to investigate the
scaling laws for sphere adhesion (Sauer and Li, 2008; Radhakrishnan and Mesarovic, 2009).
The half-space adhesion theory has also been extended to elasto-plastic spheres (Mesarovic and
Johnson, 2000) and flat punches (Ma et al., 2007). Effective adhesion models are often used to
account for adhesion in granular interaction and flow (Liu et al., 2010; Li et al., 2011b; Nguyen
et al., 2014).
Effective adhesion models have also been formulated for capillary adhesion, accounting for the
global effect of liquid bridges, e.g. see Orr et al. (1975); Maugis (1987); Cai and Bhushan (2008).
Due to the mathematical complexity of the Young-Laplace equation (33), these models are based
on simplifications, like considering liquid bridges between rigid spheres, and assuming toroidal
menisci.

4.2 Rough surface adhesion

Effective models have also been developed for rough surface contact and adhesion. Those go
back to the classical multiasperity contact approach of Greenwood and Williamson (1966) –
later extended by Bush et al. (1975) and Ciavarella et al. (2006) – that is based on local
Hertzian contact together with a given, e.g. Gaussian, height distribution of the asperities. The
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e.

Figure 10: Adhesion of soft spheres (Sauer and Li, 2007a; Sauer, 2009a): (a-d) Deformation and
stress field (left) and contact pressure (normalized by Young’s modulus E) vs. radius (right)
between a half-space and sphere with radius R0; (e) load displacement curve, marking the four
states shown in a.-d. by ‘◦’. For small displacements, the theory of Maugis (1992) comes very
close to the more general computational results.

formulation has been extended to adhesive, JKR-like contact by Fuller and Tabor (1975) and
Johnson (1975), and DMT-like contact by Chang et al. (1988) and Maugis (1996). A drawback
of the formulation is that it only accounts for roughness on one length scale. A further drawback
of the underlying Hertzian and JKR-based contact models is that they are not applicable for
full surface contact but only for locally small contact spots.
Full contact with a single-scale, periodic, wavy surface has been studied by Johnson (1995) –
for the case of slight roughness – and by Zilberman and Persson (2002) – for the case of large
roughness. The two cases were later combined by Sriwijaya et al. (2007).
A different approach, that accounts for roughness on several length scales and is also valid for
full contact, is the rough surface contact theory of Persson (2001). The work has been extended
to adhesive contact by Persson and Tosatti (2001) and Persson (2002).
In recent years the theories have been compared to numerical approaches based on finite element
analysis (Hyun et al., 2004), Green’s function and molecular dynamics (Campañá and Müser,
2007; Dapp et al., 2014), 2D boundary element methods (Carbone et al., 2009), non-linear
elastic foundation theory (Galanov, 2011), and 3D surface integration (Medina and Dini, 2014).

22



Further theoretical and numerical studies of rough surface adhesion can be found in Hui et al.
(2001); Carbone and Mangialardi (2004); Ali and Sahoo (2006); Sahoo (2006); Benz et al. (2006);
Guduru (2007); Li and Kim (2009); Eid et al. (2011a) and Kesari and Lew (2011).
Effective models can also be formulated for capillary adhesion between rough surfaces. Streator
and Jackson (2009) present a numerical model for capillary adhesion between deformable 2D
rough surfaces, based on the analytical half-space model of Zheng and Streator (2004).

4.3 Computational peeling models for thin elastic films

Another popular field where effective adhesion models have been developed is thin film peeling.
Effective peeling models provide a relation for the maximum peeling force based on the model
parameters like the peeling angle, film stiffness, and work of adhesion. The initial model of
this kind was derived by Kendall (1975). Since then, the formulation has been extended to
account for root rotation and plasticity (Williams, 1993), shear and bending stiffness (Li et al.,
2004; Thouless and Yang, 2008), Lennard-Jones based adhesion (Oyharcabal and Frisch, 2005),
nonlinear material behavior (Williams and Kauzlarich, 2005; Molinari and Ravichandran, 2008),
interfacial slippage (Lu et al., 2007), the deformation in the peeling zone (Pesika et al., 2007),
pre-straining and pre-tensioning (Molinari and Ravichandran, 2008; Chen et al., 2009), and
interface sliding (Collino et al., 2014). Recently, a geometrically exact beam formulation has
been developed for peeling that accounts for varying film thickness and captures the bending
and shear deformation due to adhesion (Sauer, 2011c; Sauer and Mergel, 2014). The formulation
can be evaluated very efficienctly with finite beam elements (Sauer and Mergel, 2014). Such a
formulation is ideal to study shape optimization of peeling strips (Mergel et al., 2014; Mergel and
Sauer, 2014). Of course, peeling can also be analyzed with a standard finite element approach
based on continuum theory, e.g. see Crocombe and Adams (1981); Wei (2004) or Thouless and
Yang (2008). However, in the case of peeling, such model can be much less efficient while not
being more accurate.

4.4 Computational models for fibrillar adhesives

The natural adhesion mechanism of many insects and lizards often has a hierarchical and fib-
rillar microstructure: slender fibers that branch into finer fibers that are capable to adhere to
rough surfaces. A system that has received particular attention is the adhesion mechanism of
the gecko. Gecko feet are covered with hundreds of thousand micrometer fine hair known as
setae, which branch into even finer hair terminating into nanometer-scale tips known as spat-
ulae. These spatulae can adhere to neighboring surfaces due to van der Waals and capillary
interactions (Autumn et al., 2002; Huber et al., 2005). From animal scale to molecular scale, the
mechanism spans nine orders of magnitude. The theoretical and numerical analysis of fibrillar
gecko adhesion mechanisms goes back to the works of Persson (2003) and Gao et al. (2005).
Simple fractal models for the hierarchical adhesive microstructures have been studied by Tang
et al. (2005); Bhushan et al. (2006); Yao and Gao (2006, 2007); Kim and Bhushan (2007a,b)
and extended to account for capillary adhesion (Kim and Bhushan, 2008), tilting of the fib-
rils (Schargott, 2009), and multiscale modeling for static (Sauer, 2009b) and dynamic (Sauer,
2010) seta detachment. A recent review of gecko adhesion has been provided by Kwaki and
Kim (2010). Sometimes, the JKR and Kendall models are considered to study gecko adhesion,
although these models are not suitable for many fibrillar microstructures, simply because the
fibers often don’t observe the assumptions inherent to those models (Sauer, 2011c). In order
to model the adhesive tips of fibrillar microstructures therefore often detailed, 3D models are
used (Dai and Gorb, 2009; Pantano et al., 2011; Sauer and Holl, 2013). Due to the involvement
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of many length scales, different models at different length scales are typically needed to study
fibrillar adhesives (Sauer, 2014a). The slender fibrils can for example be modeled efficiently
by beam theory (Sauer and Mergel, 2014), which is used in the computations shown in Fig. 9.
Recently the modeling of entire fiber arrays has also been considered (Gillies and Fearing, 2014).

5 Conclusion

This paper provides a survey of computational methods for adhesive contact focusing on gen-
eral continuum mechanical models for the attractive adhesion of solids. The aim is to provide a
complete overview of the formulations and methods suitable for computational modeling. The
survey distinguishes between local material models (Sec. 2), local interface models (Sec. 3) and
effective models (Sec. 4) for adhesion. Local material models describe the local stress-strain
behavior within the adhesive due to local elasticity, viscosity, plasticity, fracturing, damage and
thermal, curing and ageing effects. For liquid adhesives also capillary forces due to surface ten-
sion can play an important role. Local interface models describe the local traction-separation
behavior at the material interface. This behavior can be related to strong or weak molecular
bonds, electrostatic interactions, or phenomenological fracture and debonding models. This
framework can therefore account for all adhesion mechanisms. Effective adhesion models de-
scribe the effective debonding and bonding at the global level, for example in the form of global
load-displacement curves. Examples are adhesion models for spheres, rough surfaces, thin films
and fibrillar microstructures.

While there is a lot a work to be found on the modeling and computation of adhesive contact,
there are still several important aspects that would greatly benefit from further research. One
such aspect is the coupling of different models, for example to describe the durability of adhe-
sive joints under nonlinear mechanical, thermal and corrosive influences. For this, experimental
investigations are called for that go well beyond standard test cases. Such experiments then
serve as important benchmark case to determine, calibrate and validate suitable analytical and
computational models.
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A., and Adams, R. D., editors, Handbook of Adhesion Technology, pages 553–595. Springer.

37



Sanz-Herrera, J. A. and Reina-Romo, E. (2011). Cell-biomaterial mechanical interaction in the
framework of tissue engineering: Insights, computational modeling and perspectives. Int. J.
Molec. Sci., 12(11):8217–8244.

Sauer, R. A. (2006). An atomic interaction based continuum model for computational multiscale
contact mechanics. PhD thesis, University of California, Berkeley, USA.

Sauer, R. A. (2009a). A computational contact model for nanoscale rubber adhesion. In
Heinrich, G., Kaliske, M., Lion, A., and Reese, S., editors, Constitutive Models for Rubber
VI, pages 47–52. Taylor & Francis Group.

Sauer, R. A. (2009b). Multiscale modeling and simulation of the deformation and adhesion of
a single gecko seta. Comp. Meth. Biomech. Biomed. Engng., 12(6):627–640.

Sauer, R. A. (2010). A computational model for nanoscale adhesion between deformable solids
and its application to gecko adhesion. J. Adhes. Sci. Technol., 24:1807–1818.

Sauer, R. A. (2011a). Challenges in computational nanoscale contact mechanics. In Müller-
Hoeppe, D., Löhnert, S., and Reese, S., editors, Recent Developments and Innovative Appli-
cations in Computational Mechanics, pages 39–46. Spinger.

Sauer, R. A. (2011b). Enriched contact finite elements for stable peeling computations. Int. J.
Numer. Meth. Engrg., 87:593–616.

Sauer, R. A. (2011c). The peeling behavior of thin films with finite bending stiffness and the
implications on gecko adhesion. J. Adhes., 87(7-8):624–643.

Sauer, R. A. (2013). Local finite element enrichment strategies for 2D contact computations
and a corresponding postprocessing scheme. Comput. Mech., 52(2):301–319.

Sauer, R. A. (2014a). Advances in the computational modeling of the gecko adhesion mechanism.
J. Adhes. Sci. Technol., 28(3-4):240–255.

Sauer, R. A. (2014b). A contact theory for surface tension driven systems. Math. Mech. Solids,
published online, DOI: 10.1177/1081286514521230.

Sauer, R. A. (2014c). Stabilized finite element formulations for liquid membranes and their
application to droplet contact. Int. J. Numer. Meth. Fluids, 75(7):519–545.

Sauer, R. A. and De Lorenzis, L. (2013). A computational contact formulation based on surface
potentials. Comput. Methods Appl. Mech. Engrg., 253:369–395.

Sauer, R. A. and Holl, M. (2013). A detailed 3D finite element analysis of the peeling behavior
of a gecko spatula. Comp. Meth. Biomech. Biomed. Engng., 16(6):577–591.

Sauer, R. A. and Li, S. (2007a). An atomic interaction-based continuum model for adhesive
contact mechanics. Finite Elem. Anal. Des., 43(5):384–396.

Sauer, R. A. and Li, S. (2007b). A contact mechanics model for quasi-continua. Int. J. Numer.
Meth. Engrg., 71(8):931–962.

Sauer, R. A. and Li, S. (2008). An atomistically enriched continuum model for nanoscale contact
mechanics and its application to contact scaling. J. Nanosci. Nanotech., 8(7):3757–3773.

Sauer, R. A. and Mergel, J. C. (2014). A geometrically exact finite beam element formulation
for thin film adhesion and debonding. Finite Elem. Anal. Des., 86:120–135.

38



Sauer, R. A. and Wriggers, P. (2009). Formulation and analysis of a 3D finite element im-
plementation for adhesive contact at the nanoscale. Comput. Methods Appl. Mech. Engrg.,
198:3871–3883.

Schargott, M. (2009). A mechanical model of biomimetic adhesive pads with tilted and hierar-
chical structure. Bioinsp. Biomim., 4:026002.

Schmidt, M. G., Sauer, R. A., and Ismail, A. E. (2014). Multiscale treatment of mechani-
cal contact problems involving thin polymeric layers. Modelling Simul. Mater. Sci. Eng.,
22:045012.

Schmidt, P. and Edlund, U. (2006). Analysis of adhesively bonded joints: a finite element
method and a material model with damage. Int. J. Numer. Meth. Engng., 66(1271-1308).

Schmidt, P. and Edlund, U. (2010). A finite element method for failure analysis of adhesively
bonded structures. Int. J. Adhesion Adhesives, 30(665-681).

Schubert, B., Majidi, C., Groff, R. E., Baek, S., Bush, B., Maboudian, R., and Fearing, R. S.
(2007). Towards friction and adhesion from high modulus micofiber arrays. J. Adhesion Sci.
Technol., 21(12-13):1297–1315.

Scott, M. A., Borden, M. J., Verhoosel, C. V., Sederberg, T. W., and Hughes, T. J. R. (2011).
Isogeometric finite element data structures based on Bézier extraction of T-splines. Int. J.
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