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Abstract

This paper presents a general model description for the contact of surface tension driven sys-
tems. The example system of a liquid droplet in contact with a deformable solid substrate is
considered. This can be easily modified to consider two liquids or two solids in contact. The
surface kinematics, essential to the modeling of surface tension, is described here in curvilinear
coordinates. In particular modeling focus are the contact conditions at the contact boundary,
where a wetting ridge may develop. It is shown that in the case of quasi-statics and hyperelastic-
ity the governing equations can be derived from a global potential that accounts for contact as
well as the energy storage within the bulk and surface domains. Altogether, 21 Euler-Lagrange
equation are derived in this manner. Apart from these strong form equations, the governing
weak form as well as its complete linearization, which are required for computational methods,
are also discussed. It is shown that the governing equations can be further simplified into a
reduced set of equations that are then suitable for an efficient computational implementation
of the system. Computational solution methods are not discussed here, as the present focus is
on the theory and its implications. A few remarks on analytical solutions, as well as a simple
computational example, are given nonetheless. An auxiliary benefit of this work is a summary
of the variation and linearization of the kinematical and constitutive equations of the system.

Keywords: contact constraints, curvilinear coordinates, Euler-Lagrange equations, membrane
elasticity, variational methods, wetting ridge.

1 Introduction

Surface tension driven systems can play a very important role at small length scales, where
surface effects can become dominant. Since all substances — liquids, solids and gases — have
surfaces at boundaries, they can all be affected by surface tension. Sometimes there is only a
surface (with negligible thickness), as in the case of membranes and thin films, and consequently
such systems may only be driven by surface tension. An illustrative example is a liquid droplet
sitting on a soft substrate. The droplet, but also the substrate, may be governed by surface
tension. Further, the surface tension will also govern the contact behavior between droplet and
substrate. This setting is relevant to the wetting-, hydrophobicity- and self-cleaning-properties
of solid surfaces. Examining the influence of the surface tension on solids, liquids and their
contact behavior, is therefore an important issue, especially at small length scales. Here in this
treatment, we are interested in assembling a very general three-dimensional model description
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in the context of non-linear continuum mechanics that accounts for the surface tension of two
bounded bodies in contact. The problem is characterized by the coupling of five fields: the
deformation of the two bodies and their three interfaces. Contact constraints are introduced
to formulate the coupling. The coupled system can in general be studied by computational
methods. This is not the focus here. This paper rather serves as a rigorous foundation for such
computations as well as for later theoretical extensions. Furthermore, it gives an overview of
the governing equations formulated in strong, weak and linearized form. It is demonstrated
that for quasi-statics and hyperelasticity, these can be derived from a global potential. It is
further shown how the system can be simplified, without losing essential information.

Here, the surface tension is formulated in the framework of the shell theory of Steigmann
[1], disregarding the curvature elasticity inherent to shells. So we only consider an in-plane
stretch-induced membrane stress state within the interfaces. Bending-induced stresses, as well
as out-of-plane stresses, are not considered here, even though they may also be relevant even for
fluid films [2]. The contact treatment considered here is based on the classical large-deformation
approaches reported by Laursen [3] and Wriggers [4]. In the context of (the aforementioned)
membranes, contact and adhesion has been studied in the work of Baesu et al. [5], Agrawal
[6] and Sauer et al. [7]. In these studies, however, the specific contact conditions along the
contact line are not included within the formulation, as is a focus here. Further novelties of
this work are: a detailed interpretation of the stress state at the wetting ridge, the derivation
of constrained membrane elasticity, the simplification into a reduced model description, and a
stability discussion for constant surface tension (occurring e.g. for liquids). An auxiliary benefit
is the summary of the variation and linearization of the kinematical and constitutive expressions
of the studied system. To the best of our knowledge, this study seems to be the most detailed
work to-date on the contact coupling of surface driven systems.

The remainder of this paper is organized as follows. Sec. 2 introduces the notation and kine-
matical description of the considered system. Sec. 3 then proceeds with deriving the governing
FEuler-Lagrange equilibrium equations based on the global potential of the system. Along the
way, the variation of kinematical and constitutive expressions is discussed. The linearization of
the governing equations is then presented in Sec. 4. A particular focus is placed on the reduction
of the model description. Sec. 5 then presents a simple computational example for illustration.
The paper concludes with Sec. 6.

2 Problem setup

This section discusses the general notation and kinematical description of the considered droplet—
substrate system. A particular focus is placed on the conditions at the contact line.

2.1 Domains

Consider a liquid droplet in contact with a solid body, as shown in Fig 1. The following five
domains can be identified: The droplet domain D, the solid domain B, the surrounding gas
domain G, which is not considered any further here, and the free surface domain

S = SLa U Sq1, U Ssa (1)
composed of the interfaces between liquid and gas, solid and liquid, and solid and gas. We
denote the surfaces of the liquid and the solid by

SL = S USsL
Ss = Ss, USsa -

(2)
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Figure 1: Problem setup: Liquid droplet D in contact with a deformable substrate B.

The fifth domain to be identified here is the contact line domain
C = SLc NSst, NSsa (3)

where the three interfaces meet. The system may be viewed as closed, without boundary. In
general, however, boundary conditions may be prescribed on the problem, e.g. due to symmetry
conditions. If an imaginary plane, P, cuts through the domains, the boundaries 0pD, 0pB,
0pS and 0pC are created. On those boundaries either displacement (Dirichlet) or traction
(Neumann) boundary conditions are prescribed. Denoting the respective domains by 9, and
o) (2 =B8,C, D, or S) we have

0pQ = 9, QU 9,0 . (4)

We also require that 9,02 N 9;Q = (), unless the prescribed displacements and tractions are
perpendicular to each other. With this, the boundaries of domains B, D and § are

oB =0,BUoBUSsg , (5)

oD =0,DUo,DUSy, , (6)
and

0S¢ = 04S¢ U 0;Se UC (7)

with ¢ = LG, SL or SG. Further, we suppose that 0pB, OpD and 0pS are defined such that
OpBNSs=0pDNSL =0pSNC = 0.

2.2 Surface kinematics

We proceed with a brief overview of the kinematical description of the interfaces. A more
detailed introduction can be found for example in [7].

Surface S can be described by a surface parameterization * = x(£%), a = 1, 2.> From this
we can define the co-variant tangent vectors a, = 0x/J£“, the co-variant components of the
metric tensor, a,g = @, - ag, the contra-variant components of the metric tensor, [a®P] =
[aaﬂ]*l, the contra-variant tangent vectors a®* = ao‘/’)aﬁ, the area change da = J,d¢! dg?

3Here and in the following all Greek indices run from 1 to 2, and imply summation when repeated.



with J, = y/det ayg, the surface normal n = ||a; x azl|/J,, the parametric derivative of a,,
aqp = O0ag JOEP | the co-variant derivative of a,, aq3 = (N ® n)ayg, and the co-variant
components of the curvature tensor bog = n - aq . The triads {a1, az,n} and {a', a? n} form
bases to describe points on §. To characterize the deformation of S, we introduce a reference
configuration, denoted Sy, and described by the mapping X = X (£%). All the kinematical
surface quantities associated with X € Sy are denoted by capital letters. From the relation
between Sg and S, we can define the surface deformation gradient F' = a, ® A%, and the area

change da = JdA with J = J,/J4 and J4 = /det A,p.

2.3 Bulk kinematics

Inside the bulk domains B and D, the deformation is characterized by the usual deformation
gradient F' = 9¢/0X , where & = (X)) denotes the mapping of material points from reference
domain (Bp and Dy) to current domain (B and D). The volume change between these domains
is then given by dv = JdV, with J = det F'. Here, a tilde is used to distinguish bulk quantities
from surface quantities. Further details on the bulk kinematics can be found in the classic texts
of continuum mechanics, e.g. [8].

2.4 The wetting ridge

The surface tension within the interface St exerts a line load onto the substrate surface 9.
For deformable substrates this line load leads to a ridge on 9B that is known as the wetting
ridge. The effect has been studied experimentally [9], theoretically — beginning with Lester [10]
and ranging to the recent work of Lubarda [11] — and numerically — by finite element methods
[12; 13] and molecular dynamics [14]. A review of the subject with many further references has
been provided recently by Yu [15]. Usually it is either assumed that the line load is supported by
a singular stress field in the substrate or that the line loads acts over a small width, associated
with the ‘thickness’ of interface Sgr,, which leads to a rounded cap of the otherwise sharp ridge
[10; 16; 11]. However, both these viewpoints are somewhat inconsistent: stress singularities are
not realistic and a phase boundary should not require a thickness. As is seen in the following
section, the equations derived here allow a more detailed and consistent interpretation. This is
shown in Fig. 2a: The line load y1,¢ coming from Sy,g is equilibrated by the surface tensions s,
and ygq of the substrate interface. These tensions are transferred into the solid by the pressure
p and the shear stress 7 acting between the substrate B and its surface Sg. The shear is only
present if the surface tension decreases from the peak value g to the far-field value ’y(s) . Such a
decrease depends on the constitutive model of the surface tension. If the surface tension of the
substrate is considered constant, the shear is zero. For stiff substrates, the wetting ridge may
only span a very small distance €. From a macroscopic viewpoint, the substrate surface may
therefore appear flat at C (Fig. 2b). The effect of p and 7 is then perceived as a net point load
e&n acting on 0B.* In order to admit this point load surface Sy is regularized into

Ss = Ss, USsg U eC (8)

as shown in Fig. 2b. Along C, the microscopic viewpoint of Fig. 2a corresponds to Neumann’s
equilibrium, which is the classical viewpoint for liquid substrates. The macroscopic viewpoint of
Fig. 2b corresponds to Young’s equilibrium, which is the limit case for rigid solid substrates. If
the substrate is a liquid or a very soft solid, one may observe Neumann’s equilibrium even at the
macroscale. In modeling, we can choose to capture either Neumann’s view or Young’s view. In

“Here, & is the stress tensor of body B; n its surface normal.
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Figure 2: Conditions at C: (a) wetting ridge (microscale view); (b) line load perceived as a
stress singularity (macroscale view for € — 0).

the latter case, the line load € 6n appears in the model and leads to a stress singularity (unless
it is regularized by the width €). According to the viewpoint in Fig. 2a, no stress singularity
appears in the substrate.

2.5 Restrictions

In this treatment, we restrict ourselves to quasi-static conditions, such that the liquid within D
in governed by hydrostatic pressure that is associated with volume change J. Further, we only
consider hyperelastic material behavior of the media within domains B, D and S.

3 Derivation of the governing equations

This section presents the governing equations of the droplet system introduced above. For
the considered system, these follow from a global potential. The variation of that potential is
discussed, leading to the weak form and the Euler-Lagrange equations governing the system. It
is then shown that the system can be simplified in its complexity, leading to a reduced set of
equations.

3.1 The global potential

External work that is applied to the system is considered to be stored as internal energy within
the bulk domains B and D, and the surface domain &, and possibly also as contact energy
within the contact interface, defined by Ssr, and C.> We therefore consider a global potential of
the form

I = intg + Mingp + Iints + e — Tlext - (9)
The energy stored within B is given by

Mg = [ WgdV, (10)
Bo

SHere, we do not consider the storage of internal energy within the contact line C, as is done in [17].



where Wi = WB(F) is the hyperelastic energy density function characterizing the solid. For a
compressible fluid, the energy stored within domain D is given by

Uingp = | WpdV, (11)
Do

where Wp = Wp(j ) is the energy density function characterizing the compressible fluid. For
an incompressible fluid, IT;p is given by

ITinep =/ prgvdV (12)
Do

where

ge=1-J=0, (13)
defines the incompressibility constraint. The quantity pf is then the associated Lagrange mul-
tiplier that physically corresponds to the fluid pressure. The energy stored within S is defined
by

ILins = WsdA | (14)
So

where the surface energy density is considered in the form Ws = Ws(aqg). Examples for Ws
are given in Sec. 3.4 below. In general, Ws may also depend on the surface curvature and not
only on the surface stretch [1].
II. denotes the contact potential. Here we consider both normal and tangential contact con-
straints that may act independently on the contact surface S, = Ssr, and the contact line C.
This is written as

ch/ pcgnda/ Tag?da/qgndS/qagf‘ds, (15)
Se Se ¢ ¢

where p. and g are the Lagrange multipliers associated with the impenetrability constraint
gn=(x—mp) -1 20, (16)
and 7, and g, are the Lagrange multipliers associated with the two sticking constraints
g =& —&§o=0, a=1,2. (17)

These contact constraints are defined through the closest projection of points between the
neighboring bodies. Following a standard contact treatment [3; 4], we (arbitrarily) designate
body B as master and D as slave body. Then, x,, € B denotes the closest projection point of
some x € JD, n;, denotes the surface normal of IB at @, § denotes the parametric surface
coordinate of @p, and &, denotes the initial parametric coordinate when contact first occurs.
These coordinates are the solution of the two nonlinear equations

fo=(x—xp)-ab=0. (18)

Physically, p. and 7, correspond to surface pressure and shear, while ¢ and ¢, correspond
to normal and tangential line forces. For classical solid contact, the line integrals are absent
(¢ = ga = 0), while for a static droplet there is no surface friction (7, = 0). In the latter case,
the line integrals are essential for capturing the tangential contact forces.

The external potential is considered in the form

Hext:/ m-pode—i-/ w-fda+/ :c'pnda—i—/ x-tds, (19)
Bo UDg SUo:B o0+D oS



where b is a prescribed, constant body force, f is a prescribed surface traction such that Jf is
constant, p is a prescribed surface pressure and t is a prescribed line force. It is assumed that
pnda and tds are invariant under deformation.

We now consider a variation of the mapping X — x, denoted by dx. The variation of the
external potential thus is

O et :/ 5m-p0bdv+/ dx - fda+ dx - pnda+ dx - tds . (20)
Bo UDy SuUoB o:D oS

3.2 Variation of various kinematical quantities

The following section discusses the variation of important kinematical quantities that are later
needed for the variation and linearization of II.
The variation of J = det F' is given as

6J = Jdivéx , (21)

since 8J = 8.J/OF : 6F, 8J/0F = JF ' [8] and 0F = grad (3z) F.
The variation of the tangent vector simply is

dag =0x 4 . (22)
Since dx = dx, a“ 4+ dxn we can expand the last result into
oz g =0T, = 0Ta,pa” +0xaa; +0z,3m+ T M5 . (23)

The semicolon denotes the covariant derivative w.r.t. £%, which is equal to the partial derivative
w.r.t. £ for general vectors. According to the formula of Weingarten n., = —b,s a”.
The variation of the metric tensor is

dang = @q - 0ag +da, - ag , (24)

which, due to (23), can also be written as
0an8 = 0Ta:8 + 028:0 — 20T bpg - (25)
Here we have used aa;ﬁ ~a, =0. From J = J,/Ja, J, = \/m, 0Jq /0005 = detlags] a®P

follows first
oJ J ap

8aaﬁ B Ea ’ (26)
and then with Eq. (24)
J
0J = §a°‘66aa5 = Ja% - da, . (27)
The variation of the normal vector is [4]
m=—-a*(n-da,) . (28)

From a® - ag = 5g and a® - n = 0 one can then obtain
ja® = (e’ nen—a’ ®a®)dag , (29)

and evaluate the variation
§a®? = 5a® - a® + a® - 6a”’ . (30)



Alternatively, §a®? can also be computed from

0a®?
dab = Olns 31
8@75 Y ( )
considering
1
a®® = —e* a5 | (32)

with a := det ang and [e*’] = [1 0; —1 0]. Introducing

aB
ot — 200 (33)
Oas
we find
maBYs — l(ea'yeﬁzs 4 eocéeﬁ'y) 902878 (34)
a

The variation of the line stretch A. := ||ac||, where a. = 0z./0¢ is the tangent to C at z.(§) € C,
is

O = L a. - oa. . (35)
A

The variation of dependant quantities, like for example x, = :r(&'p), is
5(xp) = 5$(£p) + x,a(gp) 653 . (36)
Denoting dxp, := dz(§,) and ag = 4(§,), we have in short
6(zp) = oy, + an 05 . (37)

Analogous expressions are obtained for §(aa), d(a§) and d(n,). With this, the variation of the
contact constrains can be determined [3; 4]. We find

ogn = (0 — 0, — @b 065) - np + (& — xp) - (6N, + Mp o 0EF) (38)
and, by taking the variation of (18),
(Sgta = 553 = CSB |:((5$ - 5$p) : a,g + gnmp - 5$p,,3:| ) (39)

where
7] = [abg — g 0] - (40)
P

Here aj, ap 5 and by 5 are evaluated at @p. At equilibrium, (38) simplifies to

8Gn = (0 — dzp) - My (41)
since ag - np = ay - n, = 0, while (39) simplifies to
dge == dg 0 = (6x — dxp,) - ay . (42)

The hat is used to denote these special cases.



3.3 Variation of the internal potentials

This section presents the variation of the internal potentials Il;u5, Ilintp and Iljys. The varia-
tion of Il is then discussed in Sec. 3.5.
For hyperelastic solids the first Piola-Kirchhoff stress is given by

P = LWB (43)
oF

such that 6Wpz = P : §F. Hence

o= [ P:0FdV, (44)
Bo
which can also be written as
0Linis = / g :graddxdv , (45)
B

where & is the Cauchy stress (in R?). With (21) and dv = J dV we obtain for an incompressible
fluid

oLipip = — / pedivdx dv + opr gy dV . (46)
D Do

For the compressible case we have
Mipep = —/ pedivixdv , (47)
D

where the fluid pressure is now defined by

oWp
=——. 48
pe 07 (48)
In a similar manner to (43) and (48) we define the in-plane membrane stress o = 0*’ a, ® ag
from 5 oW
af . 2 S .
0% =5 Do (49)
With oW
0Ws = -—>aq
S Dtes AoB (50)
(25), and da = J dA we thus have
lipts = / (51'@;5 oP — §x o8 baﬁ) da . (51)
S

3.4 Membrane constitutive examples

To illustrate the constitutive behavior at interface S, we present some examples. The first
example is a liquid membrane with constant surface energy . The energy density (per reference
surface) then is

Ws=~dJ, (52)

such that o®® becomes
O,CYIB — fyaaﬁ , (53)



according to (26). Another example is
Ws=5(n—2mJ), I = A (54)
S = 9 1 ) 1-= Ao
which gives
o = p)J(AP — a®F) . (55)

This is a constitutive relation that is suitable for solids and can be used for the numerical
stabilization of liquid membranes [18]. The last example considers constrained membranes. In
the presence of a constraint g = 0, the membrane stress is given by

N J 8aa@ qsaaag ’

(56)

where ¢gg is the Lagrange multiplier associated with g. For instance, if the membrane is made
of incompressible rubber, we have

Ws=p/2(L —3), Li=hL+)3, (57)

and

g=g=1—-J=0, (J=J\3). (58)

Here A3 denotes for the out-of-plane stretch of the rubber membrane. gs can then be obtained
from the condition that the out-of-plane stress ¢33 vanishes. This stress can be found from

— 1 [OWs 0g

033 = JT[@)\;; +q‘38)\3] ) (59)
see Appendix A. One finds ¢s = p/J? and thus

o = p)J (A —a*P [ J?) . (60)

This material model has been used in the computational examples of [7].

3.5 Variation of the contact potential

We now turn towards the contact potential Il.. Its variation readily follows as

Ol = — /S (pc59n+7aég$‘>da —/C(qégnquang?‘)ds

- /S (pcgn+mg?)5jda—/C(qgn+qagf‘) iicds (61)

- /S (5pcgn+57ag€“>da —/6(5q9n+5qag?>d8,

where we have used da = J dA and ds = A.dS. The variation of the contact constraints is given
in (38) and (39). Note, that when body B is rigid, we have dx,, = 0, such that (61) simplifies
significantly. At equilibrium, where g, = 0 and g = 0, Eq. (61) reduces to

oIl = — /Sc (pc5§n+7a5g§‘> da — /C(q5§n+qa6g3) ds
_/SC <5pc9n+(57'a9ta>da—/c<5qgn+5qag€¥>ds_

10



Inserting (41) and (42), the first line expands into

(5m1:[0:—/pcnp-5a:da —/ Ta @y -0z da —/qnp-dwds —/qaag~(5wds
Se Se C C

+/pcnp-5a:pda+/ Taag~5a:pda+/qnp-éa:pds+/qaag~5a:pds.
Se Se ¢ c

(63)
Introducing the contact traction
fe=Taay +pcnp on S (64)
and contact line force
4. = qaap +qnp oncC (65)
we get,
oIl = — / fe- (5cc — 6:cp) da — / <6pc gn + 074 gta) da
S S (66)

—/qc~(5w—5$p)d3 —/(5qgn+5%93)d3'
c C

O, is an approximation to 1. that is exact at equilibrium. Therefore, S, may be used instead
of dIl. to determine equilibrium, even though this introduces a variational inconsistency.

3.6 Divergence Theorems

Some of the terms appearing in variations 1l 5, dllinp and dllis can be rewritten using the
divergence theorem. This gives

/&:grad&cdv: 5m-&nda—/(5.’n~div&dv, (67)
B oB B
/ prdivixdv = 5:1:-pfnda—/ ox - grad prdv , (68)
D oD D
and
0T q:p o da = 0z 0P mgds — / 0xq Ja[fﬁ da . (69)
Se 0S, Se

For the considered problem the boundaries of domains B, D and S, are given by (5) — (7). The
contribution €C, according to (8), is needed in order to capture line loads acting on surface 083
(see Fig. 2b). In this case, parameter ¢ — 0 is then a regularization parameter required for
dimensional consistency. Note, that usually & = 0 on the Dirichlet boundaries 9,8, 0, D and

OuSe.

3.7 Euler-Lagrange equations
Given the developments of the preceding sections, we can now examine the Euler-Lagrange

equation of the system. Therefore the variation of potential II is set to zero for all possible
variations of the deformation and Lagrange multipliers. The contact contribution associated

11



with p. is only considered active if p. > 0. Otherwise this contribution is omitted. Setting the
various variations to zero successively, yields the following six statements

Soll = 0pllint + 0plle — Ol = 0V b, dzp €W,

5pr = 5printD =0 VoprePr,

Sp T = 0,11, =0 Vdp.€Pe,

D P (70)
S, 11 = 6, 10, =0 Vora €Ta,

511 = 6,11, =0 VigeQ,

61 = 04, 11, =0 Vg € Qa,

where W, P, Pe, Ta, @ and Q,, are suitable function spaces. The last five statements, i.e.

oprgydV =0 V opr € P, (71)
Do
/5pcgnda =0 Vip.€P., (72)
S
/5Tagf“da:0 YV 61a € Ta (73)
S
/5qgnds:0 Vige Q, (74)
C
and
/5qagtads =0 Vg, € Qn, (75)
C

give back the incompressibility constraint g, = 0 and the four contact constraints g, = 0 on S,
g8 =0o0n S, gn =0 on C and g on C that are active during contact.

The first equation, (70.1), can be split into two separate systems, composed of the droplet D
and the substrate B. By choice, we attribute the internal energy of interface Sgr, to the droplet
system. Setting the variation dz = 0 on each system, yields

5mDH:/ [—pfdivéa:—pb-ém}dv—/ pn-dxda
D oD
+ / [O‘aﬁ 0Ta:8 — o8 bag 6z — f - 51:] da — / t-dxda (76)
Sy, 0 Sy,

—/fc~6acda—/qc-5scds:o, Vox € Wp
Sc c

for the droplet system, and

(5mBH:/[&:graddw—pl_)-dw]dv— f-dxda
B

+ / [(;aﬁ 020 — 0P bog 6z — f - 533] da — / t-dxda (77)
Ssa b3}

:Ssa

—l—/fc-da:da—i—/qc-éwds:o, Vox € Wp
Sc C

for the substrate system. Here, Wp and Wg denote the kinematically admissible function spaces
for the two systems, and dxp, the variation of the surface point &, € 9B, has been replaced
by the equivalent symbol dx. As seen, the two systems are coupled by the contact forces f.

12



and q.. It is noted that these forces are defined in Sec. 3.5 at equilibrium. If the system is
investigated in another configuration, the more general formulation appearing in (61) needs to
be considered for the coupling. In this case a split into systems (76) and (77) is not straight
forward. Egs. (76) and (77) are the governing weak form equations of the two systems. They are
the basis of a finite element discretization of the problem [18]. With the help of the divergence
theorem, Eq. (76) can be rewritten into

0:/(—gradpf+pb)-5:cdv+/
D oD
+/ (075 070 + 07 bag 0z + F - bz da+/
SLa O

tSLG
+ / (0805 030 + 05 bag b2 + - 62| da +/ (F* — 121) o ds — /tgL 5a ds
SsL O C
fe -5mda+/qc-5mds .
C

(Pf+P)n'5dea+/ prn -0z da

SLa USsL

t* —t¥a) dxyds — | tfa 0z, ds
(7~ ) drads — [ 15

SsL

Se

This can be further rearranged into

0:/(—gradpf+pb)‘5:cdv+/ (pf—i—ﬁ)n-&cda
D D

[(ULG 5t ) dza + (Uﬁé bag + pr + D) 53:} da
Sva (79)

+
P

+ /S [(asL 5+ S+ ) 2a + (08 bag + pr — pe + ) 593} da
SL
+ / (i — th,) dx,ds + / (i — tSL) dxy ds — / (qc —tLg — tSL) -dxds .
0SLa 0rSsL, ¢

Applying the divergence theorem to Eq. (77) gives

0=/(div&+p5)-5azdv+/ (}’—&n)-émda—/ dx -onda
B OB SsueC
+ / [ag‘gﬂ 5%e + 0an bag 62 + F - 5:1:] da + / (£ —t8g) dwa ds — /tg‘G 824 ds
Ssa ' 0:Ssa C

—/ fc-&cda—/qc'&nds.
Sc C

(80)
Denoting 6¢ := a® - 6m and ¢ := n - on, this can be further rearranged into
0= / (divé + pb) -5:cdv+/ (7 — &n) - 6z da
B OB
+ / [(Jseﬁ+fa 6%) 2o + (058G bas + P — &) 535] da (81)
Ssa
+ / (i—tgg) dxy ds — / (fC +&n) -dxda — / (qC + tsa +66'n) -dxds .
O0¢Ssc c C
Note, that due to
o, = UO‘?B a, +0%Pbsn (82)
the middle part can be rewritten into
| (g F - om) sada. (33)
Ssa
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Now, by considering dx = 0 successively on the various domains® we obtain the remaining

Euler-Lagrange equations

gradps — pb =0 onD, (84)
—pf = p on 8tD 9 (85)

o7ty + [P =0 on Sic (36)

o7& bag +pr+5 =0 on SiG , (87)
tig=t on JSiq , (88)

o+ fE+ =0 on Ssr, , (89)
0% bop +pr —pe+ =0 on Sgr, , (90)
tgr, =t on 0:Ssy, , (91)

trg +tsL = g, onC , (92)

dive +pb=0 on B, (93)
on=f on OB, (94)

agg =0+ =0 on Ssa (95)
0gabag —0+p=0 on Ssa (96)
tog =t on 9Ssa , (97)

on=—f, ondSs, (98)
tsg+eon=—q. onC. (99)

Altogether, the considered system is thus governed by 21 Euler-Lagrange equations. It is noted,
that it is straight forward to modify the presented system, such that also body D is governed
by a general equilibrium equation of the form (93). Likewise, one can also modify the system
such that B is governed by an equation of the form (84).

3.8 Simplification: Reduced set of governing equations

The set of Euler-Lagrange equations can be reduced and simplified by considering eliminations
and analytical solutions. Considering an incompressible fluid, where p = py, Eq. (84) is solved
by

pr=x pb+op,, (100)

where py is an unknown datum pressure at the origin that is discussed further below. We can
thus eliminate pf as well as f. and g, from the set of Euler-Lagrange equations. The remaining

SFirst consider = = 0 on all surfaces and lines to obtain (84) and (93). Then use these results and consider
dx = 0 on all line boundaries and on selected surfaces to obtain (85), (86), (87), (89), (90), (94), (95), (96) and
(98). Finally use the previous results and d = 0 on selected line boundaries to obtain (88), (91), (92), (97) and
(99).
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equilibrium equations are thus given by Egs. (86)—(88), Egs. (93)—(97) and

005 — 6+ =0 onSsL, (101)

0 bag+pr—5+p=0 onSg, (102)
t, =t on 0¢Ssr, , (103)

tig+tsy +tsg+eon=0 onC. (104)

According to the viewpoint in Fig. 2a, eon is absent from the last equation, which is then
Neumann’s equilibrium. On the other hand, according to the viewpoint in Fig. 2b, eomn is
needed to capture the point load acting on the substrate surface 0B, since now tg;, and tgg
can only balance the horizontal component of tr,¢ (Young’s equilibrium). If the droplet is not
pinned along C, e &n is normal to 5.

Also, weak form (76) simplifies in view of (100): We now have

0:/ [Uo‘ﬁéfva;g—aaﬁbagéx—(pfn+f)-5m]da—/ t-dxda
Sy, 0

S,
—/ fc-éwda—/qc-&pds.
Sc C

Here, pr is viewed as an external force on interface Sy, that is given by (100). The consequences
of this revision are discussed in Sec. 4.4. The quantity p, is indeterminate from equilibrium
and must remain related to the incompressibility constraint (13). Treating p, as the Lagrange
multiplier associated with this constraint, dpf now corresponds to dp,, which is constant across
D. Eq. (71) now reads

(105)

Sy 11 = Opy / gvdV =bp,(Vo—V) =0 Vp, €Py, (106)
Do
where .
V:/dv:/ x-nda (107)
D 3 Jop
and .
Vb:/ dv = = X -NdA (108)
Do 3 0Dy

denote the volume of Dy and D. This implies that now the global incompressibility constraint
Gw=W—-V=0 (109)

is enforced. The reduced system is now governed by the two coupled weak equilibrium equations
(77) and (105), the weak constraints (71)—(75), and the strong constraint (109). The elimination
of unknown p; at this stage” leads to an unsymmetric formulation as is seen in Sec. 4.4. For
this reason, the unsymmetry stemming from the variational inconsistency introduced by (66),
also seen in Sec. 4.4, does not introduce any further disadvantage.

3.9 The solution of the Euler-Lagrange equations

The Euler-Lagrange equations given above can be solved in general by numerical methods,
that are for example based on the weak form equations (76), (77) and (105); e.g. see [18].

7 After variation and before linearization.
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Numerical methods are not discussed here, although an example is shown for illustration in
Sec. 5. Analytical solutions, on the other hand, can only be found for special cases. One of
these is the case where we have no external loading (b = 0, f = fa, +pn = 0 and t = 0),
constant surface tension according to (53) (so that aa% = 0 and 0*b,s = 7b2), and a stiff
substrate that obeys small deformation theory. In thisvcase, the substrate surface Sg remains
flat, so that S = 0, and the droplet surface Sy, attains a spherical shape. The mean curvature
of the sphere is b% = —2/ Ry, where Ry denotes the radius. The fluid pressure, constant within
D, thus is pr = 2y1,c/Ro according to (87). On Sgr, we then find the contact pressure p. = ps
and contact shear f& = 0 according to (89) and (90). The contact radius depends on the droplet
volume and the contact angle at C, which in turn depends on the three surface tensions. If the
contact line is not pinned, the line force € 6n is normal to the substrate surface, and one can
obtain the relations
YsG — YSL = VLG cosbe

~ . (110)
€0 = ygsinb. ,

from (104). Using the half-space solution of Bousinesq and Cerutti [19] one may then compute
the stress state o due to the line load and contact pressure.

4 Linearization of the governing equations

This section presents the linearization of the governing weak forms. Both the full system
(Sec. 3.7) and the reduced (Sec. 3.8) system are discussed. From the linearization, the tangent
of the system is found, which allows an assessment of the system’s stability. The linearization is
further needed for certain numerical descriptions of the system. In particular, the consequences
of the reduction are illustrated.

Consider a state of the system, characterized by the variable y = [x, pf, pe, Ta, ¢, ga). Further
consider a change of this state, denoted Ay = [Ax, Aps, Ap., A1y, Aq, Agy]. The linearization
of variation dII at this state in the direction of the considered change, is written as

(y + Ay) = 6ll(y) + Adll(y) . (111)

Now, before examining the change AJII, we discuss the linearization of kinematical quantities
and constitutive relations.

4.1 Linearization of various kinematical quantities

The determination of the change is analogous to the determination of the variation. The changes
AJ, Aay,, Aagg, AJ, An, Aa“, Aa®? Ad, A(zp), Agy and Ag? = A&y are thus given in
analogy to the expressions of Sec. 3.2. What remains to be determined are the changes of the
variations. Some of these are easily determined or of minor importance. Those that are neither
are provided in the following.

The change of variation §J is given by

ASJ = Jéa, (a®*nen+a*®a’ —a’ ®a®) Aag , (112)

according to (27) and (29), while A is

1 1
Ad)N, = x Aa. - da; — F(Aac cac)(ac - dae) , (113)

C
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according to (35). For a dependent quantity, like z, = x(&;), we find
Ad(xp) = dak ALY + Aal 663 + 663 al 5 ALY + ab A . (114)

Similar expressions follow for Ad(at) and Ad(np). The changes of the contact quantities dgy
and dg; can then be determined as [3; 4]

Adgy = —ny - (5aa AES + Aab 5E5 + 563 aP, Agp) .
+ gnmp - (5a§ +ab 553) ad? (Aag +ap; Afg) ‘nyp )
and, by examining Ad f, from (18),
Abeg = P [ (5a7 AE] + Aad 56 + 6¢) a Agg)
+ gamp - (mg7 A& + Al 56) + 56} ab_s Ag;i)
—a?- (5% AE) + Al 6y + 66 aby s AL + 663 aﬁéAgp)

+ (62— omy) - (Aal+af AGY) + (Az - Aay) - (6ah +ab 06} |
(116)
At equilibrium the expressions for dg, and dg; simplify to those given in (41) and (42), which
allow an identification of the contact forces in (64) and (65). If one chooses to work with this
simplification, linearizing dg, and gy with disregard to their derivation, one finds

AdGn = A(6in) = —np - (5% ALY + Aab 560+ 5¢0 a Agp> (117)

and
A6 = A(Eg) = ap”| — af - (008 A + Aak 6] + 5 ab s Agh)

—ad (Aag bey + 66y aby s Agg) (118)
+ (0w omy) - (Aa+af AG) |

These expressions contain only a subset of the terms appearing in (115) and (116). But they
are not symmetric w.r.t. linearization and variation.

4.2 Linearization of the stress measures

We now discuss the linearization of stress measures &, p; and ¢®? that characterize the consti-
tutive behavior of the system. The Cauchy stress in B can be linearized through

AN (119)
kl

(I-F"F'). The

D=

where ey, are the components® of the Green-Almansi strain tensor & =

elasticity tensor

_ 00;;
Cijkt = 7=
Y 8€M

8Latin symbols are used for indices running from 1 to 3.
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follows from the type of constitutive model chosen for B. This is not discussed further here.
For compressible fluid behavior in D the fluid pressure can be linearized through

Ops

Apr = —= AJ 121
pr=5 (121)
where
_ O _9Wp (122)
oJ  9J2

is the bulk modulus of the fluid. The membrane stress 7% = J 0®?, considered for convenience,
can be linearized through

oroP
AroB = 82 ~Aays - (123)
Y
The tensor 5
«
ca,@’y& = 2(27- (124)
s

denotes the elasticity tensor for the membrane. For the three examples in Sec. 3.4 one finds

B _ 7J<1(ea7655 + eo“seﬁ'y) - aaﬁa'y‘s) (125)
a
for stress (53),
B _ M(2aa[ja75 B }(emeﬁa n eaéeﬁv)) (126)
a
for stress (55), and
P — g2 <4aa5a75 - 1(60”666 + eaaeﬁv)) (127)
a

for stress (60). We note that in the first case — the case of liquids — the elasticity tensor is not
positive definite, since
Mo PP mas >0 Ymas #£0 (128)

is not satisfied. E.g. taking mqg = aqp yields mqgs B0 M5 = —8J7.
4.3 Linearization of the full system

With the relations of the preceding two sections, the change AJII can now be evaluated. It is
seen that this quantity is symmetric w.r.t. linearization and variation. The change of dIl;u5
gives the well-known result [20]

AL = /deid Gk Az dv + /B&Um Cijhe Az g dv . (129)
The change of 0Iliyp simply gives
AdILp = /Dpf divéx div Az dv — /D Opediv Az dv — /D Apedivézdv , (130)
for the incompressible case, and

AdLipip = / pediviz div Az dv +/ K divéz divAxdv , (131)
D D
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for the compressible case. To linearize ¢Ili,ts, first note that since 6xq.3 = 0.5 - an + 0z bag
one can write

Olliges = | 0z - 7P agdA . (132)
We thus obtain

Abllps = | dz0- AT agdA+ | 6z - 77 AagdA . (133)
So SO

Inserting A7*? and Aas from above, yields
Adllipts = / B0 dx o (ag ® ay) Az 5dA + 0x o - B Az gdA . (134)
30 50

The linearization of the contact variation 0Il. in (61) is straight forward, but yields many
different terms. For conciseness, we only list the 8 terms emanating from p.. This gives

AdJT
ASTL = — / pcMgnda—/ (Ape 6gn + 6pe Agn) da—/ Pegn —— da
S S S (135)
AJ o0J o0J AJ
- e (600 == + Agn — ) da— | gu( Ape —= + 6pe —= ) da + ... .
R S L R G R I

The remaining 24 terms, emanating from 7, ¢ and q,, look very similar. Here, contributions
Adgn, Adgs*, AdJ and Ad)\. are given in Sec. 4.1. Note, that several terms vanish in AJIL. at
equilibrium where g, = g¢* = 0.

The last contribution, the change of §lley¢ is simply

Adlleyt =0 . (136)
The complete linearization of the weak form is then characterized by the change

AN = AbIlines + AblLinep + AdlLints + A, . (137)

4.4 Linearization of the reduced system

The reduced system, presented in Sec. 3.8 is computationally interesting since it is more efficient
than the full system. However, its linearization turns out to be unsymmetric, since the subse-
quent linearization is treated differently than the initial variation. For the reduced system the
fluid pressure py is treated as an external force in (105). The linearization of this contribution
yields

Adlly = — ox - Apsnda — ox - pr A(nda) . (138)
SL S,
Here we have
Apr = Apy + Az - pb | (139)
due to (100), and
A(nda) = (n®a* —a*®n) Aayda, (140)

due to (27) and (28). The linearization of contribution 5pff[, appearing in (106), gives

A, IT = —6p, AV, (141)
with 1 )
AV = - Aw-nda—i—/ z-A(nda) . (142)
3 Js, 3 Js,
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If surface Sy, is closed, or if Az = 0 on the boundary 95y, we have (see Appendix B)

/ z-(M®a®—a*®@n)Aayda=2 [ Az -nda, (143)
SL SL
such that
Aépff[ = —0py Az -nda (144)
St

in this case. This part is symmetric to the first term of AbTloyt. But due to the second term in
Aéflext, the linearization of the reduced weak form remains unsymmetric. Therefore nothing
is lost if the contact contribution is also considered in the simplified version of expression (66).
For this we find

. R AJ
AGIL, = — / Pe Adgy da — / (Ape 6gn + 6pe Agn) da — / (pc dgn + gn 5pc> —da + ...
Se Se

J
(145)
The complete linearization of the reduced weak form is then characterized by the change

c

ASTL = AbThipess 4 Adp, 1T 4 AdTings + ASTIe — AdTleys - (146)

5 A computational example

To give an impression of the scope of applications of the presented model equations, we briefly
discuss a computational example. Consider a liquid droplet, D, in quasi-static contact with
a deformable substrate block B. The system is analyzed by a finite element discretization of
the reduced formulation given in Secs. 3.8 and 4.4. The substrate is discretized by hexahedral
elements. In the bulk, linear 8-noded elements are used. On the upper substrate surface (i.e. on
Ss), quadratically enriched surface elements, with 13 nodes, are used [21]. The interfaces are
modeled by the stabilized membrane formulation of [18]. A suitable computational contact
algorithm for line contact on deformable substrates has not been developed yet. Therefore the
contact line C is assumed to be pinned on B in the example. Then, no contact algorithm is
required. This corresponds to adding weak forms (77) and (105), thus eliminating the contact
integrals over S and C. In the undeformed configuration the block B has the dimension 2Lg X
2Ly x Ly. The droplet has the volume 2L8. C is pinned at the radius Lg. A Neo-Hookean
material model is considered for B with the constants £ = Ey and v = 0.3. The surface
tension of all interfaces is considered constant, using vy, = 0.08 EgLg, vs1, = 0.10 EgLg and
vsa = 0.04 EyLg. A constant body force acts on the medium enclosed by the droplet considering
pb = —0.2 Ey/Lg [sina, 0, cosa]” with o = 20°. This corresponds to a droplet under gravity
on an inclined substrate. Fig. 3 shows the finite element solution for the given parameters. It
can be seen that large deformations appear in the system, leading to a distinct wetting ridge
along C.

6 Conclusion

This paper presents the governing equations of filled liquid and solid membranes in contact
with a deformable substrates. An example are liquid droplets on soft substrates. Apart from
considering quasi-static conditions, the problem is treated very general: It includes compressible
and incompressible liquids, general hyperelastic membrane models that may contain internal
constraints, and general hyperelastic substrates. It also includes two different treatments of
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Figure 3: Contact between a liquid droplet and a deformable substrate: a)—b) reference solution
for || pb|| = 0; ¢)—f) solution for ||pb|| = 0.2 Ey/Ly; the coloring in e) shows the pressure ps/Ey
acting on Sr; otherwise the coloring shows the vertical stress component &33/Fy within B.
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the wetting ridge that appears at the three phase boundary: a detailed microscopic and a
coarse-scale macroscopic viewpoint. The contact between membrane and substrate is formu-
lated considering distinct contact constraints for the contact surface S, and the contact line
C. The considered setup is governed by a global potential II. It is shown that the governing
equilibrium and constraint equations follow as the Euler-Lagrange equations of this potential.
It is further shown how these can be simplified into a reduced set of equations that is conve-
nient for computational approaches. For both sets, the full system and the reduced system, the
linearization is then derived.

The present model formulation is suitable for numerical solution approaches like the finite el-
ement method. A corresponding example that does not require the contact contributions is
briefly discussed. Concerning contact, a FE implementation of the model has been considered
for rigid substrates and without sticking contact [18]. The extension of this implementation
to the full problem requires a suitable algorithm for line contact, which will be considered in
future work.

A Constrained membrane elasticity

For a constrained elastic body B, the first Piola-Kirchhoff stress follows from

oW, .
P = aFB’ W =Ws+aqs9s , (147)

where Wg = WB(F) and gg = gB(F) are the energy density (per reference volume) and the
constraint of body B; gs corresponds to the Lagrange multiplier. Within a membrane, the bulk
deformation gradient takes the form

F=F+\MnoN, (148)

where F' = a, ® A® is the in-plane deformation gradient. Considering

~ oW, ~
AWp = —2 : AF, (149)
OF
P=J& F_T and & = o/t + d33n ® n, where t is the current thickness of the membrane, one
can derive 7
AWB = o7 P Aaaﬂ + J b33 Adg (150)

where T' = t/\g is the reference thickness of the membrane. Introducing the energy density
(per reference surface area)

Ws=WsT=Ws+qsgs, Ws=WsT, qs=aqsT, (151)
for which we can write ) .
5 OWs oWs
AWsg = —=A —2 A 152
S Datns Qap + s 3 (152)

in the case of isotropy, allows us to identify constitutive relations (56) and (59).
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Proof of Eq. (143)

To prove Eq. (143), one can first show that

r-(mea*—a*@n)w, =z (n®a*—a*@n)w), . (153)

i

Denoting the term in the outer parenthesis by ¢®, one can now show that

x-ch=2w-n+(x-c%)q, (154)

and then employ the surface divergence theorem to get

/m-c%dazZ/w~nda+/ x-c*myds, (155)
S S oS

where m,, are the components of the boundary normal. So if S is closed, or if w = 0 on 9§,
one obtains (143) for w = Awx.
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