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Abstract

A geometrically exact membrane formulation is presented that is based on curvilinear coordi-
nates and isogeometric finite elements, and is suitable for both solid and liquid membranes.
The curvilinear coordinate system is used to describe both the theory and the finite element
equations of the membrane. In the latter case this avoids the use of local cartesian coordinates
at the element level. Consequently, no transformation of derivatives is required. The formula-
tion considers a split of the in-plane and out-of-plane membrane contributions, which allows the
construction of a stable formulation for liquid membranes with constant surface tension. The
proposed membrane formulation is general, and accounts for dead and live loading, as well as
enclosed volume, area, and contact constraints. The new formulation is illustrated by several
challenging examples, considering linear and quadratic Lagrange elements, as well as isogeomet-
ric elements based on quadratic NURBS and cubic T-splines. It is seen that the isogeometric
elements are much more accurate than standard Lagrange elements. The gain is especially large
for the liquid membrane formulation since it depends explicitly on the surface curvature.

Keywords: contact constraints, curvilinear coordinates, isogeometric analysis, nonlinear finite
element methods, follower loads, volume constraints.

1 Introduction

Membranes are computationally challenging structures. Their geometry can be complex, they
may undergo large deformations, large rotations and large strains – and thereby behave highly
nonlinear – and they are characterized by several physical instabilities: They are unstable in
compression, unstable for out-of-plane loading (in the case of zero in-plane tension), unstable for
pressure loading (in the case of rubber membranes) and unstable w.r.t. in-plane loading (in the
case of liquid membranes). The aim of this paper is to formulate a general, 3D, geometrically
exact and fully nonlinear computational membrane model that accounts for pressure loading as
well as volume, area, and contact constraints and is suitable for both solid and liquid membranes.
Our focus is on pure membranes, i.e. curved, surface structures that do not support in-plane
compression, out-of-plane bending, and shear.3 Such a restricted focus is useful due to the

1corresponding author, email: sauer@aices.rwth-aachen.de
2This pdf is the personal version of an article whose final publication is available at www.sciencedirect.com
3We note that in the literature, the term membrane is often also used for the special case of 2D plane-stress

structures.
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large range of membrane applications: they appear as inflatable and pressurized structures, like
balloons, tubes and airbags; as fabrics, tents, canopies, parachutes, foils and sails; as water-
filled membrane structures, like inflatable dams; as biological membranes, like blood vessels,
cells, diaphragms, aneurysms and lung alveoli; as liquid droplets, menisci, bubbles, foams and
sprays; as thin sheets and films – both liquid and solid – as atomistic membranes, like graphene
sheets; as interacting membranes, e.g. adhering cells; and in the topic of form-finding and
minimal surfaces.

Computational formulations for 3D, nonlinear membrane go back to the seminal work of Oden
(Oden and Sato (1967), see also Oden (2006)). Since then, the field has been continuously
advanced, among others by Fried (1982); Tang (1982); Roddeman et al. (1987); Contri and
Schrefler (1988); Wriggers and Taylor (1990); Ibrahimbegovic and Gruttmann (1993); Haseganu
and Steigmann (1994); Gosling and Lewis (1996); Muttin (1996); Wu et al. (1996); Bonet et al.
(2000); Rumpel and Schweizerhof (2003); Stanuszek (2003); Weinberg and Neff (2008). Many
of these works are concerned with the topic of wrinkling due to in-plane compression. Relevant
to membranes is also the work on shells, since they typically contain membranes as special
cases. Geometrically exact computational shell formulations go back to the work of Simo and
Fox (1989) and Simo et al. (1990). A review of the topic can be found in Bischoff et al. (2004).
Recently, shell formulations have been proposed in the context of isogeometric analysis (Kiendl
et al., 2009; Benson et al., 2011; Nguyen-Thanh et al., 2011). The fact that solid membranes
can be extracted out of shell theory does not imply that this will work robustly in computations,
which is why computational membrane formulations are important by themselves. Computa-
tional formulations based on curvilinear coordinates have been considered rigorously, both for
membranes (Ambroziak and Klosowski, 2006) and shells (Arciniega and Reddy, 2007). Another
recent development are rotation-free shell formulations, as they have been considered by Flores
and Estrada (2007); Linhard et al. (2007); Dung and Wells (2008) and recently Benson et al.
(2011); Nguyen-Thanh et al. (2011) for isogeometric analysis. Isogeometric formulations allow
the formulation of C1-continuous surface formulations that are advantageous for flow simula-
tions (Kiendl et al., 2010) and sliding contact (De Lorenzis et al., 2011; Temizer et al., 2012);
in this regard see also Sauer (2011, 2013a) for Hermite-based, C1-continuous contact surfaces.
Relevant to membranes is also the topic of live pressure loading (Bufler, 1984; Schweizerhof and
Ramm, 1984). Membranes are also an interesting subject in shape optimization (Bletzinger
et al., 2005; Manh et al., 2011).

This paper is concerned with several modeling aspects that are not considered in the computa-
tional formulations mentioned above. The most important of these are the inclusion of liquid
membranes and the inclusion of several corresponding constraints and properties (like contact
angles) into our formulation. We are also motivated by the provision of a novel pure membrane
formulation for solids. This formulation is based on the theoretical framework of Steigmann
(1999), which has not yet been extended to a computational formulation. The presented formu-
lation also contains several further merits and novelties: It allows for a split between in-plane
and out-of-plane contributions, which is used to construct a new formulation for liquid mem-
branes. It admits arbitrary elastic material models for solid and liquid membranes. In the case
of liquid membranes, the formulation is capable of capturing the complex mechanical behavior
at liquid interfaces that is a consequence of different interface energies and the surface topol-
ogy.4 The formulation constitutes an explicit formulation of the liquid surface that is more
general than the explicit finite element formulation of Brown et al. (1980), and is an alternative
to immersed boundary and phase-field methods, e.g. see Dong (2012) for a recent example. In
distinction to the work of Javili and Steinmann (2010), which extends surface energies to bulk

4The current formulation is restricted to quasi-static, continuum mechanical systems. Dynamical, atomistic
and non-mechanical behavior are outside our present scope.
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systems, our formulation considers problems that are purely described by surface quantities.

Our formulation is based purely on displacement-based finite elements and can be used with
any kind of such elements. It includes, in particular, isogeometric NURBS elements to capture
the deforming surface geometry to high-accuracy, even for comparably coarse discretizations. It
is straight forward to implement in an existing FE framework. It avoids the need to transform
derivatives between configurations and avoids the use of local cartesian coordinate systems.
Shell models are often formulated using local cartesian coordinate systems, as this allows using
classical constitutive relations formulated in this manner (Wriggers, 2008). To our mind, there
is no need for such a detour: The balance laws, kinematics, constitutive relations as well as the
FE weak forms and corresponding FE arrays can all be formulated efficiently in the curvilinear
coordinate system. The capabilities of the presented formulation are demonstrated by several
challenging computational examples, considering pressure loading, inflation and contact.

The following section presents the theory of nonlinear membranes in the framework of curvilinear
coordinates, considering pressure loading, volume, area and contact constraints. Sec. 3 proposes
a straight-forward finite element implementation of the theory, and Sec. 4 presents several
examples of solid and liquid membranes to illustrate the capabilities of the present formulation.

2 Nonlinear membranes

In this section, we summarize the theory of nonlinear membranes in the framework of curvilinear
coordinates. The membrane kinematics, constitution and balance laws in strong and weak form
are discussed, and various kinds of constraints are considered. Details on curvilinear coordinates
can for example be found in Kreyszig (1991) and Steigmann (1999).

2.1 Surface description in curvilinear coordinates

The membrane surface, denoted S, is fully characterized by the parametric description

x = x
(
ξ1, ξ2

)
. (1)

This corresponds to a mapping of the point (ξ1, ξ2) in the parameter domain P to the material
point x ∈ S. In the following, Greek letters are used to denote the two indices 1 and 2.
Summation is then implied on repeated indices. The tangent vectors to coordinate ξα at point
x ∈ S are given by

aα =
∂x

∂ξα
, α = 1, 2 (2)

The two vectors form a basis for the tangent plane of S. In general, they are not orthonormal.
This apparent drawback of the description is actually an advantage when it comes to the
kinematical description. This turns out to be very straightforward, e.g. see Eq. (16). The
basis at x is characterized by the metric tensor, that has the co-variant components

aαβ := aα · aβ . (3)

From the inversion
[aαβ] := [aαβ]−1 (4)

we obtain the contra-variant components of the metric tensor. Explicitly, we have a11 =
a22/ det aαβ, a12 = −a12/ det aαβ and a22 = a11/ det aαβ. With these a dual basis can be
constructed: From the co-variant base vectors aα the contra-variant counterparts

aα := aαβaβ (5)
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can be determined. We note that summation is implied on repeated indices. Note that aα ·aβ =
aαβ and aα ·aβ = δβα, where δβα is the Kronecker symbol. The unit normal of S at x is given by

n =
a1 × a2

‖a1 × a2‖
. (6)

It can be shown that
‖a1 × a2‖ =

√
det aαβ . (7)

The bases {a1,a2,n} and {a1,a2,n} can then be used to decompose any vector v on S, i.e.

v = vα aα + vnn = vα a
α + vnn , (8)

where vα denote the co-variant, and vα the contra-variant components of v. The derivative of
the tangent vectors is given by

aα,β =
∂aα
∂ξβ

. (9)

Further, we require the so-called co-variant derivative of aα, which is defined by

aα;β := aα,β − Γγαβ aγ (10)

where Γγαβ are the Christoffel symbols of the second kind given by Γγαβ = aα,β ·aγ . Introducing
the identity tensor on S

1 = aα ⊗ aα = aα ⊗ aα = 1̃− n⊗ n , (11)

where 1̃ is the usual identity tensor5 in R3, we can write

aα;β = (n⊗ n)aα,β . (12)

Contracting with n then yields

n · aα;β = n · aα,β =: bαβ (13)

which are the co-variant components of the curvature tensor b = bαβ a
α ⊗ aβ. The eigenvalues

of this tensor are the principal curvatures of surface S.

2.2 Membrane kinematics

Next, we consider the deformation of the membrane surface. We therefore distinguish between
the deformed, current configuration S and the undeformed, initial configuration S0, see Fig. 1.
Both surfaces are described by the relations of Sec. 2.1. For surface S we use the lower case
symbols x, aα, aαβ, aα, n and bαβ. For surface S0 we use the corresponding upper case symbols
X, Aα, Aαβ, Aα and N .6 In order to characterize the deformation between surfaces S0 and S
consider the line element

dx =
∂x

∂ξα
dξα = aα dξα (14)

and likewise dX = Aα dξα. Contracting with Aβ yields dξα = Aα · dX, so that

dx = (aα ⊗Aα) dX . (15)

5A tilde is used here to indicate standard tensors in R3

6Here, the curvature tensor components bαβ are only needed on S.
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Figure 1: Mapping between parameter domain P, reference surface S0 and current surface S

Here the tensor
F = aα ⊗Aα (16)

is the surface deformation gradient of the mapping X → x. Likewise we find F−1 = Aα ⊗ aα.
Through F we thus have the following transformations

aα = FAα , Aα = F−1aα ,

aα = F−TAα , Aα = F Taα .
(17)

Given F , we can introduce the right and left Cauchy-Green surface tensors and their inverses,
i.e.

C = F TF = aαβA
α ⊗Aβ , C−1 = aαβAα ⊗Aβ ,

B = FF T = Aαβ aα ⊗ aβ , B−1 = Aαβ a
α ⊗ aβ .

(18)

Next, we discuss the surface stretch between surfaces S0 and S. The area element da ⊂ S is
defined by

da := ‖(a1 dξ1)× (a2 dξ2)‖ = ‖a1 × a2‖d� , (19)

where d� := dξ1 dξ2. A corresponding statement follows for dA ⊂ S0. In view of Eq. (7) we
thus have the relations

dA = JA d� , JA :=
√

detAαβ ,

da = Ja d� , Ja :=
√

det aαβ ,

da = J dA , J := Ja/JA .

(20)

2.3 Momentum balance for membranes

From the balance of linear momentum the strong form equilibrium equation

tα;α + f = 0 , (21)
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at x ∈ S can be obtained (Steigmann, 1999). Here f is a distributed surface force, that can be
decomposed as

f = fα a
α + pn = fα aα + pn (22)

where fα and fα are the co-variant and contra-variant in-plane components of f and p is
the out-of-plane pressure acting on S. Further, tα denotes the internal traction acting on the
internal surface ⊥ aα. According to Cauchy’s formula

tα = σ aα , (23)

where σ denotes the Cauchy stress tensor at x ∈ S, which we consider to be symmetric. We
emphasize that tα is not a physical traction since aα is usually not normalized. In general, the
stress tensor takes the form

σ = σαβ aα ⊗ aβ + σ3α(n⊗ aα + aα ⊗ n) + σ33n⊗ n . (24)

For membranes it is typically assumed that σ3α = σ33 = 0, so that

σ = σαβ aα ⊗ aβ . (25)

We denote this the in-plane Cauchy stress tensor. For convenience we consider the unit of σ
as force per length, so that we can eliminate the membrane thickness from the formulation (see
Sec. 2.4). We now find that tα = σβαaβ such that the co-variant derivative of tα becomes

tα;α = σβα;α aβ + σβα bαβ n (26)

according to Eq. (13). Equilibrium equation (21) thus decomposes into

σβα;α + fβ = 0 , (in-plane equilibrium),

σαβ bαβ + p = 0 , (out-of-plane equilibrium).
(27)

To close the problem, the usual Dirichlet and Neumann boundary conditions

u = ū on ∂uS
t = t̄ on ∂tS

(28)

are considered on the membrane boundary ∂S = ∂uS ∪ ∂tS. Here, we suppose that the
prescribed traction t̄ = t̄α aα is tangent to S, since out-of-plane boundary forces, as well as
out-of-plane line and point loads within the surface, lead to singularities in the membrane
deformation and are therefore not considered in the present formulation. The traction on
boundary ∂tS, according to Cauchy’s formula, is given by

t = σm , (29)

where m = mαa
α is the outward unit normal of ∂tS. It follows that t = mαt

α.

2.4 Membrane constitution

The known 3D constitutive models can be adapted to the membrane. We therefore suppose
a general elastic material relation of the form σ̃ = σ̃(B̃). For membranes it is useful to
consider the decomposition B̃ = B + λ2

3 (n⊗n), where λ3 is the out-of-plane stretch, and σ̃ =
σ/t+σ33 (n⊗n), where σ is the in-plane stress tensor defined in Eq. (25) and t = λ3T denotes
the current membrane thickness, for a given reference thickness T . Out of these considerations,
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a relation between the membrane quantities B and σ can be obtained. As an example we
consider an incompressible Neo-Hooke material, given by

σ̃ = µ̃B̃ + q1̃ , (30)

where µ̃ is the shear modulus and q denotes the Lagrange multiplier associated with the incom-
pressibility constraint. For membranes, the model decomposes into

σ = (µ̃B + q1)Tλ3 ,

σ33 = µ̃λ2
3 + q .

(31)

For incompressibility det B̃ = (Jλ3)2 = 1. Under the plane stress assumption σ33 = 0, we then
find q = −µ̃/J2 and consequently

σ =
µ

J

(
B − 1

J2

)
, (32)

with µ := µ̃T . Componentwise, in the aα basis, this becomes

σαβ =
µ

J

(
Aαβ − aαβ

J2

)
. (33)

Contracting with aβγ , the components σαβ and σαβ can be obtained.7

Another example are liquid, e.g. water, membranes governed by constant isotropic surface ten-
sion γ. In that case a constant stress tensor of the form

σαβ = γ δαβ (34)

is obtained. It can be seen that the in-plane equilibrium equation (27.1) is only satisfied for
fα = 0. This implies that static water membranes cannot equilibrate in-plane loads, and
are therefore unstable in-plane; a property that needs to be addressed in a computational
formulation (see Sec. 3). The out-of-plane equation (27.2) now yields

2Hγ + p = 0 , 2H := bαα , (35)

which is the well known Young-Laplace equation. A prominent feature of liquid membranes is
that they form distinct contact angles. This angle is a consequence of a line force acting along
the contact line. An example is shown in Sec. 4.5.

2.5 Membrane weak form

Next, we derive the weak form corresponding to equilibrium equation (21). Consider a kine-
matically admissible variation of S, denoted w ∈ W, where W denotes a suitable space for w.
Contracting Eq. (21) with w and integrating over S yields∫

S
w ·
(
tα;α + f

)
da = 0 ∀w ∈ W . (36)

Considering w = wα a
α + wn, this expands into∫

S
wα
(
σαβ;β + fα

)
da+

∫
S
w
(
σαβ bαβ + p

)
da = 0 ∀w ∈ W , (37)

7Due to the symmetry of σαβ the ordering of indices does not matter in σαβ , i.e. σαβ = σ α
β .
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i.e. it splits into the in-plane and out-of-plane parts identified in Eq. (27). Such a split is useful if
different approximation techniques are chosen for the in-plane and out-of-plane response. Using
the divergence theorem for curved surfaces (Gurtin and Murdoch, 1975), the first in-plane term
is rewritten into ∫

S
wα σ

αβ
;β da =

∫
S

(
wα σ

αβ
)

;β
da −

∫
S
wα;β σ

αβ da

=

∫
∂S
wα σ

αβmβ ds −
∫
S
wα;β σ

αβ da ,

(38)

where mα = m · aα are the co-variant components of the unit normal m on the line ∂S. Since
wα = 0 on ∂uS and since wασ

αβmβ = wα t̄
α on ∂tS expression (37) thus becomes

Gint −Gext = 0 ∀w ∈ W , (39)

where

Gint :=

∫
S
wα;β σ

αβ da−
∫
S
w σαβ bαβ da ,

Gext :=

∫
S
wα f

α da+

∫
∂tS

wα t̄
α ds+

∫
S
w pda ,

(40)

are the internal and external virtual work contribution due to variation w. Considering wα = 0
and w = 0 subsequently, the weak form can be decomposed into the weak forms∫

S
wα;β σ

αβ da−
∫
S
wα f

α da−
∫
∂tS

wα t̄
α ds = 0 ∀wα ∈ Wα (in-plane),∫

S
w σαβ bαβ da+

∫
S
w pda = 0 ∀w ∈ Wn (out-of plane).

(41)

Such a split is advantageous for the description of liquid membranes. Since liquid membranes
are inherently unstable in-plane, they can be stabilized by providing additional stiffness via
Eq. (41.1) without affecting the out-of-plane response. This is demonstrated in the examples of
Sec. 4.4 and 4.5.
Otherwise, considering

wα;β = (w · aα);β = w;β · aα + w bαβ , (42)

the two terms of Gint can be combined into

Gint =

∫
S
w;α · σαβ aβ da . (43)

It is noted that for this expression only single derivatives of variation w and configuration x are
required, while in the decomposed formulation of Eq. (41) second derivatives of x appear. Intro-
ducing the surface Kirchhoff stress tensor τ = Jσ, which eliminates one J from expression (33),
the last equation can be rewritten into

Gint =

∫
S0
w;α · ταβ aβ dA . (44)

Within framework (39), both dead and live loading can be considered. This is discussed further
in Sec. 3.2. Beforehand, we discuss several useful membrane constraints.
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2.6 Volume constraints

The volume of the domain D enclosed by the membrane may be constrained. An example is a
cell containing incompressible fluid. Formally, the volume constraint is written as

gv := V0 − V = 0 , (45)

where V0 and V denote the initial and current volumes enclosed by the initial and current
membrane configurations. Since dv = x ·nda/3 and dV = X ·N dA/3, these can be computed
by the surface integration

V =
1

3

∫
S
x · nda , V0 =

1

3

∫
S0
X ·N dA (46)

These expressions are valid for closed surfaces, and care has to be taken when modeling open
membranes. In this case one must account for the volume contribution associated with the miss-
ing surface. Eq. (45) can be included in the formulation by the Lagrange multiplier method. The
Lagrange multiplier associated with the volume constraint is the internal membrane pressure p.

Remark 1: Eq. (45) is a global constraint on the entire system. This approach can be taken, if
the medium enclosed by the membrane can be characterized by pressure and volume alone, as
is the case for quasi-static conditions. If the fluid dynamics of the inside medium is relevant,
the volume constraint needs to be considered as part of the fluid equations.

Remark 2: We note that the governing equations (39) and (45) can be derived from a variational
principle for conservative systems. This is the case for the constitutive models discussed in
Sec. 2.4 and for pressure loading of closed membranes surfaces.

2.7 Area constraints

Another useful constraint is a constraint on the membrane surface area. For example, red blood
cells are known to conserve the surface area during deformation (Kloeppel and Wall, 2011).
The area constraint can be formulated globally and locally. The global area constraint can be
expressed as

ga := A0 −A = 0 , (47)

with

A =

∫
S

da , A0 =

∫
S0

dA . (48)

The local area constraint needs to be expressed pointwise, by setting

ga := 1− J = 0 , (49)

where J is defined by Eq. (20). The satisfaction of (49) implies the satisfaction of (47), but not
vice versa. The local area constraint can be treated similarly as incompressible elasticity in 2D.
The global area constraint can be treated in a similar manner than the volume constraint. An
example is considered in Sec. 4.6.

2.8 Contact constraints

Contact is characterized by the impenetrability constraint

gn ≥ 0 , (50)
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where
gn := (x− xp) · np (51)

denotes the normal gap between the membrane point x ∈ S and the surface Γ of a neighboring
obstacle. Here, the unit vector np denotes the surface normal of Γ at the point xp, which is the
solution of the minimum distance problem

xp(x) =
{
y
∣∣ min
∀y∈Γ

‖x− y‖ for x ∈ S
}
. (52)

We note that this minimization can cause difficulties for complex surface geometries (Wriggers,
2006). Constraint (50) can be included in the membrane formulation by various methods. The
simplest of these is the penalty formulation, which is considered in all the contact examples of
Sec. 4. In this case the contact traction f c acting at x ∈ S is given by

f c =

{
−εn gnnp , gn < 0 ,
0 , gn ≥ 0 ,

(53)

where εn is the penalty parameter. The contact forces contribute to virtual work balance (39).
This can be expressed by including

Gc = −
∫
S
w · f c da (54)

on the left hand side of Eq. (39). For two deformable membranes in contact, weak form (39)
must be satisfied for each membrane, and contribution Gc is added correspondingly to each
weak form. To avoid a surface bias it is advantageous to treat both contact pairs equivalently
as is done in the two-half-pass algorithm of Sauer and De Lorenzis (2013).

3 Finite element discretization

The governing equations (39) and (45) are solved by the finite element (FE) method. The ini-
tial surface S0 is therefore discretized into a set of finite elements Ωe

0 that are defined by nodal
points XI or control points in the case of isogeometric FE. The deforming membrane is then
described by the motion of the nodal points XI → xI , which corresponds to a Lagrangian FE
description. The deformed configuration of element Ωe

0 is denoted Ωe. Here we consider quadri-
lateral elements since these can be conveniently related to a master element in the parameter
domain ξα ∈ [−1, 1].

3.1 Finite element interpolation

Within elements Ωe
0 and Ωe, the geometry is approximated by the nodal interpolations

X ≈Xh =
∑
I

NIXI , (55)

and
x ≈ xh =

∑
I

NI xI , (56)

where NI = NI(ξ
1, ξ2) denotes the nodal shape function defined on the master element in

parameter space. The summation is carried out over the nne nodes of the element. Here, the
following quadrilateral elements are considered: 4-noded linear Lagrange elements, 9-noded
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quadratic Lagrange elements, quadratic NURBS elements, and cubic T-spline elements. In
principle, any other element type can also be considered. For isogeometric elements the shape
functions are constructed via the Bézier extraction operation (Borden et al., 2011; Scott et al.,
2011). According to Eq. (2), the tangent vectors are thus approximated by

aα ≈
∑
I

NI,α xI , (57)

where NI,α = ∂NI/∂ξ
α. Considering a Bubnov-Galerkin formulation the variation w is approx-

imated in the same way as the deformation, i.e.

w ≈
∑
I

NI wI . (58)

For shorthand notation, we rewrite Eqs. (55), (56) and (58) into

X ≈ NXe , x ≈ Nxe , w ≈ Nwe , (59)

where N := [N11̃, ..., NI 1̃, ...] is a (3× 3nne) array with the usual identity tensor 1̃ and Xe, xe,
and we are vectors containing the stacked nodal values for the element.8 In order to discretize
the weak form we need to discretize wα, w and w;α. We find

wα ≈ w · aα = wT
e NTaα = wT

e NTN,α xe

w ≈ w · n = wT
e NTn

w;α ≈ N,α we

(60)

where N,α := [N1,α1̃, ... NI,α1̃, ...]. Note that for a vector like w, the co-variant derivative
w;α coincides with the regular partial derivative w,α. The surface normal n is given through
definition (6) and approximation (57). According to (13), the components of the curvature
tensor become

bαβ ≈ n ·N,αβ xe . (61)

With the above expressions, we further find

wα;β ≈ wT
e

(
NT
,β N,α + NT (n⊗ n) N,αβ

)
xe (62)

according to eq. (42).

3.2 Discretized weak form

The above expressions are now used to discretize the membrane weak form of Sec. 2.5. The
surface integration is carried out over the element domains Ωe and then summed over all nel

FE as

Gint =

nel∑
e=1

Geint , Gext =

nel∑
e=1

Geext . (63)

For the internal virtual work of eq. (44) we now have

Geint =

∫
Ωe0

w;α · ταβaβ dA ≈ wT
e

∫
Ωe0

NT
,α τ

αβ N,β dAxe (64)

8Non-italic discrete arrays X, x, w and N should not be confused with italic field variables X, x, w and N .
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according to approximations (57) and (60). Writing Geint = wT
e f eint, we identify the internal FE

force vector

f eint =

∫
Ωe0

NT
,α τ

αβ N,β dAxe . (65)

As noted in Eq. (40.1), the internal virtual work can be split into in-plane and out-of plane
contributions. At the element level these are

Geinti =

∫
Ωe0

wα;β τ
αβ dA , Geinto = −

∫
Ωe0

w ταβ bαβ dA , (66)

such that Geint = Geinti + Geinto. In view of Eqs. (60), (61) and (62), the corresponding force
vectors become

f einti =

∫
Ωe0

ταβ
(
NT
,α N,β + NT (n⊗ n) N,αβ

)
dAxe ,

f einto = −
∫

Ωe0

ταβ NT (n⊗ n) N,αβ dAxe .
(67)

For Gext we consider external loading of the form f = f0/J + pn, where f0 and p are given
loading parameters. The first corresponds to a dead force per reference area, the second to a
live pressure. According to Eq. (40.2) we then have

Geext =

∫
Ωe0

w · f0 dA+

∫
∂tΩe

w · t̄ ds+

∫
Ωe
w pda , (68)

which yields the external force vector

f eext =

∫
Ωe0

NT f0 dA+

∫
∂tΩe

NT t̄ ds+

∫
Ωe

NT pnda . (69)

The original weak form (39) now yields the descretized version

wT
[
fint − fext

]
= 0 , (70)

where fint and fext are obtained from the assembly of the corresponding elemental force vectors,
and w is the kinematically admissible set of all nodal variations. These are zero for the nodes
on the Dirichlet boundary ∂uS. For the remaining nodes, Eq. (70) implies

f := fint − fext = 0 , (71)

which is the discretized equilibrium equation that needs to be solved for the unknown nodal
positions x; see Sec. 3.5.

We note, that in this formulation no mapping of derivatives between master and current config-
uration is required. Also no introduction of local, cartesian bases are needed. The formulation
thus is straight forward and efficient to implement.

3.3 Contact contributions

The proposed membrane model can be easily extended to include contact, provided a 3D contact
algorithm is available. The contact contribution (54) simply yields the force vector

f ec = −
∫

Ωek

NT f c da , (72)

that needs to be included in Eq. (71). For details on the the FE implementation of Eq. (72) we
refer to Sauer and De Lorenzis (2013).
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3.4 Discretized volume and area constraints

The volume, enclosed by the discretized membrane surface, is obtained as

V =
1

3

nel∑
e=1

∫
Ωe
nTN daxe (73)

according to Eq. (46). For the volume constraint, gv = V0 − V = 0, V0 can be considered as an
externally prescribed volume, e.g. during inflation, or as the initial value of V . For the global
area constraint, we simply evaluate Eqs. (47) and (48) by elementwise integration.

3.5 Solution method

The volume constraint is included in the formulation by the Lagrange multiplier method. The
Lagrange multiplier associated with the constraint is the pressure, p, acting on membrane.
Combining (45) with (71) leads to the system

f(x, p) = 0 ,

gv(x) = 0 ,
(74)

that needs to be solved for the unknown nodal position x and pressure p. Due to the nonlinear-
ities of the model, this is solved with Newton’s method. Therefore, the linearization of f and gv

w.r.t. x and p are needed. This is discussed in Appendices A and B. For the area constraint,
a similar setup is obtained. In this case, the Lagrange multiplier corresponds to an in-plane
pressure that affects the in-plane stress state.

3.6 Hydrostatic pressure

In some applications, the pressure p may vary locally. In static examples this is typically due
to gravity. An example is the hydrostatic pressure distribution in a water-filled membrane. In
this case, we have

p = pv + ph , (75)

where ph is the hydrostatic, height dependent, pressure and pv is the pressure associated with
the volume constraint. The former is simply written as

ph = ρ g · x (76)

where ρ is the density of the pressure causing medium, and g is the gravity vector.9 The value
of pv is then the (constant) datum pressure at the origin.

3.7 Numerical quadrature

In parameter space, each element is defined on the master domain ξα ∈ [−1, 1], α = 1, 2. The
integrals from above are mapped to the master domain using transformations (20). Integration
is then carried out with standard Gaussian quadrature on the master domain.

9typically g = −[0, 0, g]T , where g is the gravity constant
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3.8 Monitoring compression

Membranes do not support in-plane compression. The absence of physical bending stiffness leads
to buckling of the structure, known as wrinkling in the case of membranes. To avoid membrane
compression in our formulation during computations, we simply monitor the minimum principal
stress

σmin =
I1

2
−
√
I2

1

4
− I2 , (77)

where I1 = trσ = σαα and I2 = detσ = detσαβ are the two invariants of the surface stress
tensor. We note that σmin < 0 does not imply the automatic failure of the discretize membrane
structure as some numerical bending stiffness may be present. More involved wrinkling criteria
can be found in the literature, see Lu et al. (2001) and Youn and Lee (2006).

4 Numerical examples

The proposed membrane model is illustrated by several examples, considering both solid and
liquid membranes under dead, pressure, and volume loading. Standard linear and quadratic La-
grange finite elements as well as quadratic NURBS and cubic T-spline finite elements, providing
C1- and C2-continuous surface descriptions, respectively, are used.

4.1 Inflation of a spherical balloon

We first consider the inflation of a spherical rubber balloon and use it for validation, since an
analytical solution exists for this problem. The rubber behavior is described by the incompress-
ible Neo-Hookean material model (30). The finite element model of the balloon, modeled as
1/8th of a sphere, is shown in Fig. 2a. Appropriate boundary conditions are provided to main-

a. b.

Figure 2: Inflated balloon: (a) initial and current configuration (for V = 10V0); (b) pressure-
volume relation for V ∈ [1 10]V0 (FE result for 3 quadratic FE).

tain the symmetry of the inflating structure. The relation between current and initial radius is
denoted r = λR. The circumference of the balloon, proportional to r, is thus stretched by λ
such that the surface deformation gradient is F = λ1 and the area change is given by J = λ2.
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Due to incompressibility this results in the thickness change t = T/J . According to Eq. (32),
the in-plane normal stress within the balloon thus is σ̃ = σ/t = µ̃T (1− λ−6)/t, which is equal
to the well-known formula σ̃ = pr/2/t. We thus obtain the pressure-stretch relation

pR

µ̃T
= 2

(
1

λ
− 1

λ7

)
, (78)

or, equivalently, the pressure-volume relation

pR

µ̃T
= 2

((V0

V

) 1
3 −

(V0

V

) 7
3

)
, (79)

where V0 = 4πR3/3 is the initial balloon volume. The p − V relation is shown in Fig. 2b.
The pressure increases quickly, peaks and then decreases gradually. This behavior is typical
for the inflation of rubber membranes. The FE computation of such problems should therefore
be carried out by prescribed volume loading instead of prescribed pressure loading. The pro-
posed FE formulation can capture the analytical behavior very nicely. This is shown by the
convergence plot of Fig. 3a. Here, the number of Gaussian quadrature points per elements are

a. b.

Figure 3: Inflated balloon: convergence of the pressure at V = 10V0: (a) convergence with
mesh size; (b) NURBS convergence with quadrature accuracy.

2×2 for linear Lagrange and 3×3 for quadratic Lagrange and NURBS elements. Since NURBS
elements describe the spherical geometry exactly, they can solve the problem exactly with only
one element – provided sufficiently many quadrature points are used. This is shown in Fig. 3b.
The results shown here validate the proposed membrane formulation.

Fig 4 shows the deformed FE meshes and the error in the membrane stress σ for the three
different element types considered here. As is seen, the error is smallest for NURBS FE. It
reaches machine precision for 12×12 Gauss points.

4.2 Inflation of a square sheet

As a second example we consider a square membrane sheet with dimension 4L0 × 4L0, apply
an isotropic pre-stretch of λ0 = 1.05 to provide initial out-of-plane stiffness, and then inflate
the structure by a prescribed volume, as is shown in Fig. 5.

Fig. 6a shows the pressure-volume relation for the three considered elements. The accuracy is
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a. b. c.

Figure 4: Inflated balloon: Error in the in-plane stress σ = pr/2 for: (a) 8×12 linear FE, (b)
8×3 quadratic FE, (c) 8×1 NURBS FE. The number of Gauss points is (a) 2×2, (b) 3×3, (c)
12×12

Figure 5: Inflated square sheet: configurations for V = {0, 1, 2, 3, 4, 6, 8, 10}V0, where V0 =
4L3

0. The coloring shows the area stretch J (which is identical to the thickness decrease).

highest for NURBS elements and lowest for linear elements. This is seen by the convergence
behavior of the different element types, shown in Fig. 6b.

Fig. 7 shows the deformed sheet for a prescribed volume of V = 5000V0 for the three element
types. As seen, all element types can accommodate enormous deformations, even for relatively
coarse meshes. The comparison with the fine NURBS mesh in Fig. 8a shows that there are
still considerable inaccuracies present in all three formulations. The NURBS result is fully
C1-continuous. In the example, particularly large deformation occur at the bottom and in the
corners of the sheet, as is seen in the close-up of Fig. 8b. The deformation in the corner shown a
tendency towards wrinkling. We observed that a further mesh refinement led to non-convergent
Newton behavior, indicating instabilities. A computational scheme for wrinkling is required to
handle this case.

4.3 Contact between balloon and cushion

The third example considers a spherical, water-filled balloon in contact with a cushion. The
balloon is loaded by hydrostatic pressure loading. The cushion is modeled by a square sheet that
is fixed along the boundary and supported by internal pressure arising from constraining the
volume beneath the sheet. The initial size of the sheet is 2R× 2R, where R is the undeformed
radius of the balloon. Both, balloon and sheet are modeled by material law (30) considering
equal µ. They are both pre-stretched isotropically by λ0 = 1.1, i.e. the constrained balloon
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a. b.

Figure 6: Inflated square sheet: (a) pressure-volume relation; (b) pressure convergence at V =
5000V0 (compared to a quadratic NURBS mesh with 23233 dofs).

a. b. c.

Figure 7: Inflated square sheet: deformation at V = 5000V0 for (a) 8 × 8 linear elements, (b)
4 × 4 quadratic elements, and (c) 8 × 8 NURBS elements. The color shows the area stretch J
displayed as log10 J .

volume is V0 = 4π (λ0R)3/3. The problem is computed by gradually increasing the gravity
level, g, pulling on the water inside the balloon. Quadratic finite elements are used. Contact is
modeled by the two-half-pass contact algorithm (Sauer and De Lorenzis, 2013) considering the
penalty method (see Sec. 2.8). In principle, any 3D contact algorithm can be applied straight
forwardly to the proposed membrane formulation. Fig. 9 shows the deformation of balloon and
cushion for various gravity levels. As shown, the deformation becomes very large, which makes
the problem very challenging. The example is interesting as it involves large deformations,
contact, pressure loading, hydrostatic loading and two volume constraints.

4.4 Growth of a hemispherical water droplet

As a validation of the formulation for liquid membranes, we consider the growth of a hemispher-
ical droplet resting on a rigid substrate and maintaining a contact angle of 90◦. The influence of
gravity is neglected in order to provide an analytical comparison result. The problem is similar
to the balloon inflation example (Sec. 4.1), and the same FE meshes are used. For a liquid water
membrane the membrane stress is given by Eq. (34), i.e. the stress is deformation independent.
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a. b.

Figure 8: Inflated square sheet: deformation at V = 5000V0 for 88× 88 NURBS elements: (a)
overall deformation, (b) deformation at the corner.

This implies that only the out-of-plane but not the in-plane forces provide stiffness and the
formulation is unstable in itself. The formulation can be stabilized by adding deformation de-
pendent in-plane forces through Eq. (67.1). These forces should not influence the out-of-plane
behavior such that the original liquid membrane formulation remains unaffected. We simply
use the incompressible Neo-Hookean model to provide the additional in-plane stability. The
Neo-Hookean material parameter µ then becomes a numerical stability parameter that should
not affect the physical results. The internal forces acting on the finite element nodes are then
simply given by

f eint = f eint

(
σαβliquid

)
+ f einti

(
σαβsolid

)
. (80)

In the absence of gravity, the pressure-volume relation is obtained analytically, similarly to the
balloon example of Sec. 4.1. Setting σ = pr/2 = γ, with r = λR and V = λ3V0, we find

pR

γ
= 2
(V0

V

) 1
3
. (81)

Since the pressure remains positive (and is thus stabilizing the structure) the volume can also
be decreased. The computed pressure and the convergence of the proposed finite element for-
mulation to the analytical result are shown in Fig. 10. Several values for the numerical stability
parameter µ are considered. They all converge to the desired analytical result. Quadratic
Lagrange and NURBS elements are considered, and it is seen that the NURBS formulation
converges much faster. This is attributed to the higher surface continuity that appears in f einti

according to Eq. (67.1). Decreasing µ improves the accuracy. A more detailed analysis of the
model proposed in Eq (80) along with the effect of parameter µ is considered in Sauer (2013b).

4.5 Liquid droplet on a rigid substrate

The next example examines a static water droplet in contact with a rigid substrate. Three
cases are considered, which examine the influence of gravity, the contact angle and substrate
roughness. Initially, prior to loading and contact, the droplet is spherical. We denote the initial
radius R, and the initial volume V0 := 4πR3/3. The water inside the droplet is considered
incompressible such that the volume remains constant during deformation. The weight of the
water causes hydrostatic pressure loading of the membrane leading to contact with the substrate.
The liquid membrane model is stabilized according to (80).
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Figure 9: Cushion contact: configurations at ρg = {0, 0.4, 0.8, 1.6}µ/R. The coloring shows
the stress invariant I1 = trσ = σαα normalized by µ. Here εn = 2000µ/R.

4.5.1 Influence of gravity

We first consider a contact angle of 180◦. Fig. 11 shows the computed droplet deformation for
various gravity values considering different FE formulations. T-Spline elements are used here to
ensure a C2-continuous description across the entire surface (apart from two degenerate points
at the top and bottom). As the gravity level increases the droplet spreads out on the substrate.
Contact is modeled according to Sec. 2.8 using a penalty parameter εn ≥ 5000γ/R. Stability
parameter µ is set to 0.005 γ. The coloring in Fig. 11 shows the membrane stress component
I1 = aαβ

(
σαβliquid + σαβsolid

)
, even though, according to (80), the stabilization term is only added

to the in-plane but not to the out-of-plane response. (Plotting only Î1 = aαβ σ
αβ
liquid, yields

Î1 = 2γ to machine precision in computations, which is physically correct but less interesting to
look at.) Therefore, I1 is not a physical error measure but rather a measure of the variational
inconsistency introduced by the stabilization term. The figure shows that this consistency error
is less than 2.5% in the case of quadratic Lagrange elements (Fig 11, top.) and less than 1% in
the case of cubic T-splines (Fig 11, bottom). In both cases the errors increase along with ρg.
In the case of Lagrange elements the largest errors are found at the element boundaries, where
the formulation is only C0-continous. For the T-spline case, which is C2-continuous, the error
is uniformly spread over the surface. These errors are a consequence of the very coarse finite
element meshes considered here. They will vanish under mesh refinement (cf. Fig. 10). This is
studied in detail in Sauer (2013b).

4.5.2 Influence of the contact angle

A distinct feature of liquid membranes is that they can form sharp contact angles at the contact
boundary. In this case, the membrane surface forms a kink at the contact boundary. These
surface discontinuities are associated with out-of-plane line forces. Such forces can be easily
included by applying a uniform line load qc along selected line finite elements, similar to the
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a. b.

Figure 10: Growing liquid droplet: (a) pressure-volume relation for V ∈ [1/8 4]V0 (FE result
for 12 quadratic FE with µ = 0.01γ); (b) convergence behavior for V = 4V0 and various µ,
considering 3× 3 Gaussian quadrature points.

application of t̄ in Eq. (69). This is shown in Fig. 12. Here, the surface tension of the free droplet
surface and the surface tension at the contact interface are considered equal, and denoted γ.
The contact angles θc = 120◦ and θc = 60◦ are thus obtained for a fixed line load qc with
magnitude γ and

√
3γ, respectively, that is pulling outward along the bisecting angle, i.e. 60◦

and 30◦. The figure shows that the consistency error in I1 remains below 1% for the considered
discretization.

Remark: Here, the line load qc has been applied to the line elements along the equator of the
initially spherical droplet. A computational procedure for this, that acounts also for varying qc,
is developed and assessed in Sauer (2013b). There, it is also shown that, for liquids, the initial
location of the contact line can be chosen to coincide with the mesh without loss of generality.
In Fig. 12, quadratic Lagrange elements are considered. In the case of NURBS elements, patch
boundaries or knot insertion should be considered to create C0-continuous lines where kinks
can form.

4.5.3 Influence of the surface roughness

The proposed membrane formulation is suitable to study the influence of surface roughness on
liquid droplet contact. As an example, we consider the case from Fig. 12a (with θc = 180◦,
V0 = 4πR3/3 and ρg = 2γ/R2) and replace the flat surface by the rough surface shown in
Fig. 13a that is taken from Sauer and Holl (2013). Here the distance between neighboring
asperities is 0.2R; their height is 0.1R. The computational solution for this case is shown in
Fig. 13b & c. It is observed that less than 7% of the bottom surface is in actual contact, while
the remaining surface is suspended between the asperities. This wetting state, know as the
Cassie-Baxter state, is a consequence of the strong hydrophobicity caused by the large contact
angle. The small contact area leads to very high contact pressures above the asperities. To
model this accurately a very large contact penalty parameter is needed. The consistency errors
in I1 are largest in the contact surface above the asperities. In those locations the discretization
is still very coarse: Due to the small contact area, only few finite elements per asperity are in
contact. If the contact angle is reduced, the local contact spot will spread down the asperities
until eventually the entire rough substrate is wetted. This is partly shown for a single asperity
in Sauer (2013b).
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a.

b.

Figure 11: Liquid droplet contact: droplet deformation for ρg = {1, 2, 4, 8, 20}γ/R2, each
with identical volume and µ = 0.005 γ: (a) quadratic Lagrange elements, (b) cubic T-spline
elements. The color shows the membrane stress I1/2 normalized by the surface tension γ. In
theory I1/(2γ) = 1.

We note, that the contact computation for liquid droplets is not a trivial task to perform.
Low values for the stability parameter µ can lead to a loss of convergence. For the presented
computations we have found the following procedure successful: We first increased ρg iteratively
to its desired value, using a high µ and low εn. Then we decreased µ and increased εn iteratively
until the accuracy is satisfactory. If convergence problems are encountered, a refinement of the
FE mesh is considered.

4.6 Area constraint versus volume constraint

The last example considers the global area constraint of Sec. 2.7 and compares it with the
global volume constraint of Sec. 2.6. Therefore a spherical rubber balloon, pressurized such
that initally λ0 = 1.1, is pinched between two rigid, flat surfaces. Fig. 14 shows the deformation
for the two cases. In case of the area constraint, the volume of the balloon decreases during
deformation. In case of the volume constraint, the surface area increases during deformation.

5 Conclusion

A novel computational formulation that is suitable for both solid and liquid, i.e. surface-tension-
driven, membranes is presented. The theory, outlined in Sec. 2, is based on the differential
geometry of curved surfaces, allowing for a very general formulation that accounts for large de-
formations and general material laws. Curvilinear coordinates are used to formulate the surface
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a. b. c.

Figure 12: Liquid droplet contact: droplet deformation for the contact angles (a) θc = 180◦,
(b) θc = 120◦ and (c) θc = 60◦, all for V0 := 4πR3/3, ρg = 2γ/R2, µ = 0.005γ and εn =
5000 γ/R. The colors show I1/(2γ) in the same range as in Fig. 11.

a.

c. b.

Figure 13: Liquid droplet contact: droplet deformation due to surface roughness: (a) surface
model, (b) droplet deformation and error measure I1/(2γ), (c) enlargement of b that also
partly shows the substrate surface (and its penetration into the droplet caused by the penalty
regularization). Here, θc = 180◦, V0 = 4πR3/3, ρg = 2γ/R2 , µ = 0.2γ and εn = 1.07 · 105γ/R.

geometry, kinematics, constitution, and balance laws. The governing strong and weak forms
are split into the in-plane and out-of-plane parts, allowing the use of different approximation
techniques for both parts and an elegant treatment of liquid membranes. Also, the consideration
of deformation-dependent pressure loading comes naturally within the proposed formulation.
Various constraints imposed upon the membranes can be handled by the theory, including vol-
ume, area, and contact constraints.
The membrane formulation is discretized using nonlinear finite elements. This results in a very
efficient formulation that only uses three degrees of freedom per surface node and avoids the use
of local cartesian coordinate systems and the transformation of derivatives. This is discussed
in Sec. 3.
The capabilities of the formulation are demonstrated by several challenging examples in Sec. 4.
Linear Lagrange, quadratic Lagrange, quadratic NURBS, and cubic T-spline finite elements are
considered for the discretization. Constraints are imposed using the Lagrange multiplier method
in the case of volume and area constraints and the penalty method for contact constraints. The
inflation of a balloon and the growth of a droplet are used to validate the solid and liquid
membrane formulations and they both yield excellent results. Comparing the different finite
element types, the examples show that large accuracy gains lie between linear and quadratic
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Figure 14: Pinched rubber balloon: global area constraint (left) vs. global volume constraint
(right). The color shows the surface stretch J . For the area constraint this correctly averages
to J = λ2

0 = 1.21. Here εn = 1000µ/R.

Lagrange, and between quadratic Lagrange and isogeometric finite elements.

The presented membrane formulation has been successfully applied to liquid droplets in this
paper, including contact angles and rough surace contact, but a rigorous analysis is still needed
to assess the approach proposed in Eq. (80), see Sauer (2013b). Another important extension to
the present formulation is the inclusion of bending stiffness, which can be present in both fluid
and solid films. In the latter case this should lead naturally to a rotation-free shell formulation,
which can be suitably handled by isogeometric finite elements. A further interesting extension
is the consideration and development of different membrane material laws. Such a development
is especially important for the case of biological membranes, which are often characterized by
complex material behavior.

A Consistent linearization of various quantities

For Newton’s method we need to linearize the kinematical quantities of the discrete system at
x in the direction ∆x. This is done at the FE level.

A.1 Linearization of aα

According to Eq. (57) we have
∆aα = N,α ∆xe . (82)

A.2 Linearization of aαβ

With definition (3) follows

∆aαβ =
(
aα ·N,β + aβ ·N,α

)
∆xe . (83)

A.3 Linearization of J

The change ∆J can be written as

∆J =
∂J

∂aα
·∆aα , (84)
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where
∂J

∂aα
= Jaα . (85)

Thus
∆J = Jaα ·N,α ∆xe . (86)

A.4 Linearization of aαβ

From Eq. (5) and the formula

aαβ =
1

a
eαγ aγδ e

δβ , a := det aαβ , (87)

where [
eαβ
]

=

[
0 1
−1 0

]
(88)

is the unit alternator, we find

∆aαβ = mαβγδ aγ ·N,δ ∆xe , (89)

with

mαβγδ =
1

a

(
eαγeβδ + eαδeβγ

)
− 2aαβaγδ . (90)

A.5 Linearization of n da

The surface normal n appears together with the area element da and it is convenient to linearize
them together. According to Eqs. (6) and (20) we have

nda = a1 × a2 d� . (91)

Hence
∆(nda) =

∑
I

(
NI,1 ∆xI × a2 + a1 ×NI,2 ∆xI

)
d� . (92)

Expanding ∆xI into ∆xI = ∆xαI aα + ∆xn
I n we find

∆xI × a2 = Ja
(
n∆x1

I − a1 ∆xn
I

)
= Ja

(
n⊗ a1 − a1 ⊗ n

)
∆xI ,

a1 ×∆xI = Ja
(
n∆x2

I − a2 ∆xn
I

)
= Ja

(
n⊗ a2 − a2 ⊗ n

)
∆xI ,

(93)

where Ja =
√

det aαβ = da/d�. Thus

∆(nda) =
(
n⊗ aα − aα ⊗ n

)
N,α ∆xe da . (94)

A.6 Linearization of ταβ

For the solid model according to Eq. (33) we have

∆ταβ = µ
(
2J−3 ∆J aαβ − J−2 ∆aαβ

)
, (95)

which can be rewritten into
∆ταβ = cαβγδ aγ ·N,δ ∆xe , (96)
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with

cαβγδ = µJ−2
(

4aαβaγδ − 1

a

(
eαγeβδ + eαδeβγ

))
. (97)

Note that the tensor [cαβγβ ], like [mαβγβ ], posses both major and minor symmetries.
For the liquid model according to Eq. (34) we have

∆ταβ = γ
(
∆J aαβ + J ∆aαβ

)
, (98)

which can also be written in the form (96), where now

cαβγδ = γJ
(1

a

(
eαγeβδ + eαδeβγ

)
− aαβaγδ

)
. (99)

B Finite element tangent matrices

B.1 Tangent matrix associated with Ge
int

The internal force vector f eint, given in Eq. (65), yields

∆f eint =

∫
Ωe0

NT
,α ∆ταβ N,β dAxe +

∫
Ωe0

NT
,α τ

αβ N,β dA∆xe . (100)

In view of Eq. (96), we can write

∆f eint =
(
kemat + kegeo

)
∆xe (101)

where we have introduced the material stiffness matrix

kemat =

∫
Ωe0

cαβγδ NT
,α (aβ ⊗ aγ) N,δ dA (102)

and the geometric stiffness matrix

kegeo =

∫
Ωe0

NT
,α τ

αβ N,β dA (103)

Both these matrices are symmetric for the two constitutive models considered here. For those
models, the terms in kemat should be multiplied-out a priori to obtain an efficient implementation.
If we consider splitting f eint into f einti and f einto additional stiffness terms are picked up. These are
reported in a forthcoming publication (Sauer, 2013b).

B.2 Tangent matrix associated with Ge
ext

From Eq. (69), for dead f0 and t̄, we have

∆f eext =

∫
Ωe

NT n∆pda+

∫
Ωe

NT p∆(nda) . (104)

The first term is only required for hydrostatic loading according to Eq. (76). Here we find

∆p = ρ gN ∆xe . (105)

Contribution ∆(nda) is given by Eq. (94). As a result,

keext =

∫
Ωe
ρNT n⊗ gN da+

∫
Ωe
pNT

(
n⊗ aα − aα ⊗ n

)
N,α da . (106)
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B.3 Tangent contributions associated with the volume constraint

If the volume constraint gv = 0 is active, we need to account for the unknown Lagrange multiplier
pv in the linearization. For the external forces we now have

∆f eext = keext ∆xe + leext ∆pv , (107)

with

leext =
∂f eext

∂pv
=

∫
Ωe

NT nda . (108)

Further, at the element level,
∆gev = hev ∆xe , (109)

with

hev =
∂gev
∂xe

= −1

3

∫
Ωe
n ·N da− 1

3

∫
Ωe
x ·
(
n⊗ aα − aα ⊗ n

)
N,α da . (110)

The preceding contributions can be arranged into the elemental tangent matrix

ke :=

 keint − keext −leext

hev 0

 , (111)

which describes the change in fint − fext and gv due to changes in position xe and pressure pv.
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