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Abstract

During peeling of a soft elastic strip from a substrate, strong adhesional forces act locally inside
the peeling zone. It is shown here, that when a standard contact finite element formulation is
used to compute the peeling process, a large mesh refinement is required since the numerical
solution procedure becomes unstable otherwise. To improve this situation, several different effi-
cient enrichment strategies are presented that provide stable solution algorithms for comparably
coarse meshes. The enrichment is based on the introduction of additional unknowns inside the
contact elements discretizing the slave surface. These are chosen in order to improve the ap-
proximation of the peeling forces while keeping the overall number of degrees of freedom low. If
needed, these additional unknowns can be condensed out locally. The enrichment formulation
is developed for both 2D and 3D nonlinear finite element formulations. The new enrichment
technique is applied to the peeling computation of a gecko spatula. The proposed enriched
contact element formulations are also investigated in sliding computations.

Keywords: adhesion, computational contact mechanics, nonlinear finite element methods,
peeling, enhanced finite elements

1 Introduction

The understanding of the peeling behavior is central to many important applications in coating,
bonding and adhesion technology. Examples include the bonding properties of thin films and
the adhesion mechanisms of various insects and lizards. There is also a standardized peeling
test used to analyze the properties of adhesives and adherents. Peeling is often compared to
fracturing and therefore finite element based cohesive fracture models are often considered in
peeling computations [1, 2, 3, 4]. A challenge in the computation of peeling problems are
the large peeling stresses that can occur in a very narrow zone at the peeling front. Classical
finite element (FE) based contact formulations often lead to a dilemma: Either a highly refined
FE description is chosen, which is computationally expensive, or a coarse description is used,
which is efficient but inaccurate and perhaps even unstable during computations. It therefore
becomes desirable to develop improved computational contact formulations for peeling that are
both accurate and efficient.
Such a formulation is proposed in this paper. The approach is based on a local enrichment of
the contact surface such that the contact surface representation is more accurate than the bulk
representation. Therefore, a new class of enhanced surface elements for contact are presented.
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2This pdf is a personal version of an article whose final publication is available at www.onlinelibrary.wiley.com
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The simplest of these is the so-called Q1C2 element, which approximates the contact surface by
a quadratic interpolation while the bulk is approximated by a linear interpolation. This element
has the same contact accuracy as a fully quadratic finite element contact description (e.g. see
[5]), but is much more efficient. The new elements are initially developed to improve peeling
computations but they also show improved behavior for sliding computations. The approach
is quite simple, efficient and very effective. The proposed contact enrichment technique shares
similarities with enhanced assumed strain methods [6] and with the XFEM enrichment technique
[7]. The new enrichment is particularly advantageous for contact problems where the accuracy
is mainly governed by the accuracy of the contact description, rather than the accuracy of
the bulk, as is often the case for peeling and sliding contact problems. The new approach is
formulated in the framework of non-linear computational contact mechanics [8, 9]. The adhesive
contact description is based on the formulation of [10], which is particularly suitable for adhesion
at very small length scales.

The proposed surface enrichment approach bears some similarities with contact surface smooth-
ing techniques that have been considered by several authors to describe contact with rigid bodies
[11], 2D contact of general, deformable bodies [9, 12, 13, 14, 15, 16] and general 3D contact
[17, 18, 19]. These methods have in common that they consider the smoothing of the master
surface in order to improve the contact forces obtained through the projection of slave points
onto the master surface. Furthermore, the smoothed surface description is not used in the FE
bulk interpolation itself, which is instead based on usual Lagrange interpolation. In contrast to
this, the presented work considers the smoothing of the slave surface in order to improve the
accuracy of integration of the contact forces, and uses the smoothed surface description also
in the bulk FE interpolation. Two surface enrichment strategies are presented, one based on
p-refinement and one based on Hermite interpolation. The Hermite-based enrichment formula-
tion proposed here, provides a C1 continuous contact surface description, resulting, as is shown,
in a highly accurate contact element. High order continuous surface descriptions have shown
several advantages in computational modeling [20]. The proposed enrichment technique is only
considered on the surface and is therefore different from adaptive bulk enrichment approaches
for delamination and contact problems, e.g. see [21]. The presented formulation is also different
from surface enrichment techniques that have appeared recently for contact, using a different
p-refinement approach [22], and cohesive zone models, using hierarchical enrichment functions
[2, 23] and an enrichment based on an elastic foundation solution [24].

The remainder of this paper is structured as follows: Section 2 provides an overview of the
computational contact approach used to describe adhesive contact. Section 3 illustrates the
difficulty that can appear during peeling computations and proposes two different strategies
to remove the problem in 2D. An extension to 3D is then considered in Section 4. Section 5
demonstrates the improved formulations on two applications. Section 6 concludes this paper.

2 Contact formulation for adhesion

This section presents an overview of the adhesion formulation in the framework of computational
contact mechanics [8, 9]. The description is based on the large-deformation contact model
developed in [10], which uses the Lennard-Jones potential to describe van der Waals adhesion,
although in principle also other force-separation laws, like cohesive zone models [25], can be
considered readily. First, the adhesion problem is outlined in the general continuum setting
and then corresponding finite element formulations are discussed. The presentation focusses on
quasi-static frictionless contact conditions.
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The adhesion problem
Consider two deformable solids Bk (k = 1, 2)3 with a given set of volumetric loads b̄k in Bk,
surface loads t̄k on ∂tBk ⊂ ∂Bk and prescribed deformation ϕ̄k on ∂ϕBk ⊂ ∂Bk. Assume that

∂ϕBk ∪ ∂tBk = ∂Bk (1)

and
∂ϕBk ∩ ∂tBk = ∅ . (2)

Further, consider a contact surface ∂cBk ⊂ ∂tBk on each body. On this surface both con-
tact tractions T ck and non-zero external loads t̄k may act together. Introducing the space of
kinematically admissible deformations,

Uk =
{
uk : Bk → R3

∣∣ uk = ϕ̄k on ∂ϕBk
}
, (3)

and the space of kinematically admissible variations,

Vk =
{
vk : Bk → R3

∣∣ vk = 0 on ∂ϕBk
}
, (4)

the weak form of the quasi-static contact adhesion problem is given by the following statement:
Find ϕk ∈ Uk satisfying

2∑
k=1

[ ∫
Bk

grad(δϕk) : σk dvk −
∫
∂cB0k

δϕk · T ck θk dAk − δΠext,k

]
= 0 , ∀ δϕk ∈ Vk , (5)

where
δΠext,k =

∫
Bk

δϕk · ρkb̄k dvk +
∫
∂tBk

δϕk · t̄k dak (6)

is the virtual work of the prescribed external loads. In weak form (5), the Cauchy stress tensor
σk in Bk is obtained from the constitutive model as a function of the deformation ϕk of body
Bk (see Appendix A). The contact traction T ck is a vector in R3, that depends on the surface
deformation ϕk ∈ ∂Bk of both bodies.

Remarks:

1. Weak form (5) can be derived from a variational principle [26, 27].

2. If one body is rigid, the sum and index k are dropped; this is considered in the following
finite element description.

3. In eq. (5), the first term is written as an integral over the current configuration of the
bodies, Bk, while the second term is written as an integral of the reference configuration
of the bodies B0k. This is advantageous in the FE implementation.

4. Due to the long-range nature of adhesion, even far away surface regions may experience
significant contact forces, and in principle one may consider the entire surface ∂Bk as the
contact surface ∂cBk [27].

5. Due to the decay of adhesion forces, a cut-off radius can be considered, so that the contact
surface is reduced.

6. The scalar quantity θk is related to the angle between the neighboring contact surfaces
and is only significant if the adhesion is very strong, as is shown in [27]. For several
practical applications, like gecko adhesion, θk can be set to unity. This is considered in
the following computations.

3In this treatment the symbol B is used to denote both the body and the configuration it occupies in R3.
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7. Looking at the weak form, the question arises how to compute the volume and surface
integrals: Does it make sense to use the same accuracy for the two conceptually differ-
ent integrals? It it shown in this paper, that it is highly advantageous to use different
approaches.

In order to evaluate the contact traction T ck, the surface distance between the contacting
bodies needs to be determined. Therefore, the closest point projection of the generic surface
point xs ∈ ∂cBk (which will correspond to a surface quadrature point in the discrete setting)
onto the surface of the neighboring body, B` (` 6= k), is computed. This computation yields the
projection point xp ∈ ∂B`, and the surface distance at xs can be obtained from

rs(xs) = ‖xs − xp(xs)‖ . (7)

The projection direction is equal to the normal of the neighboring body at xp, which is denoted
as np, and is also a function of xs. In the following, two cases are considered: Van der Waals
adhesion and the contact penalty method.

Van der Waals adhesion can be described by the function

T ck(xs) = Tcnp , Tc(rs) =
AH

2πr3
0

[
f1

45

(r0

rs

)9
− f2

3

(r0

rs

)3
]
, (8)

which is obtained from integrating the Lennard-Jones potential four times [10]. Here AH is
Hamaker’s constant and r0 is the atomic equilibrium spacing of the Lennard-Jones potential.
The coefficients f1 and f2 depend on the curvature of the neighboring body. If the adhesive
substrate is flat, as is considered in the examples here, f1 = f2 = 1 (see [27]). Figure 1.a displays
the function Tc(rs) given in eq. (8). It is characterized by the equilibrium distance

a. b. c.

Figure 1: Contact force according to a. Van der Waals adhesion ; b. Penalty method; c.
Regularized van der Waals adhesion.

req = 6
√

1/15 r0 , (9)

where Tc = 0, the minimum

Tmin = Tc(rTmin) = −
√

5
AH

9πr3
0

, rTmin = 6
√

1/5 r0 = 6
√

3 req , (10)

which corresponds to the maximum possible attractive traction, and the work of adhesion

wadh = −
∫ ∞
req

Tc drs = 3
√

15
AH

16πr2
0

, (11)
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which has the units J/m2. The maximum stiffness

kadh = max
rs

∂Tc

∂rs
= 3
√

4
3AH

10πr4
0

(12)

is also important, since it may cause an attractive instability during contact as is described in
[10]. During adhesive contact the distance rTmin (and thus also the maximum tensile traction
Tmin) is always attained on some surface region.

For comparison, Figure 1 also shows the contact force according to the penalty method, i.e.

T ck(xs) = −εn rsnp , if rs < 0 , else T ck(xs) = 0 (13)

where −rs corresponds to the penetration of point xs into the neighboring body and εn is the
penalty parameter. An active set strategy is used to distinguish between active and inactive
contact points. In case of adhesion (8), no active set strategy is needed, since all contact points
are active (unless a cut-off radius is considered). One major difficulty of expression (8) is that
highly refined finite element discretizations are required in order to resolve the attractive forces
accurately. Coarse meshes lead to poor computational behavior and loss of convergence, which
is the motivation for the new formulation addressed in this paper (see Section 3). A second
difficulty of (8) is that the contact stiffness goes to infinity as one approaches rs = 0. This can
be fixed numerically by using a regularized force, where the slope is set to a constant value
below a certain distance rs, as is shown in Figure 1.c.

The finite element (FE) formulation follows from weak form (5). Considering a displacement
based FE description the weak form is discretized into

vT
[
fint + fc − fext

]
= 0 , ∀v ∈ Vh , (14)

where f and v denote the forces and virtual displacements of the FE nodes. The first term
denotes the internal virtual work that describes the bulk behavior. Details on the standard
non-linear bulk FE formulation are provided in Appendix A. The second term captures the
virtual work done by the contact forces. In view of eq. (5), the contact forces acting on the
surface element Γe0 ∈ ∂cBh0k are

f ec = −
∫

Γe
0

NT
e T ck dA , (15)

where Ne is the array
Ne =

[
N1 I , N2 I , ... , Nnse I

]
(16)

that contains the nse nodal shape functions used to interpolate the surface displacements (and
the virtual surface displacements) as well as the geometry of the element. In 3D vector f ec has
the size (3nse × 1). To simplify the evaluation, integral (15) is mapped to a simple master
element Γ� following standard FE procedure. The bulk discretization is often based on bilinear
quadrilateral elements for 2D problems and trilinear, 3D hexahedral elements for 3D problems
(so called Q1 elements). On the surface one thus has linear, 1D elements or bilinear, 2D
elements.4 The corresponding master elements are a line segment of length 2, and a 2 × 2
square. Numerical quadrature is used to integrate eq. (15) on the master domain, i.e.

f ec ≈ −
nqp∑
qp=1

NT
e (ξqp)T ck(ξqp) j(ξqp)wqp, ξqp ∈ Γ� , (17)

4The same nodes used to discretize the bulk are also used to discretize the surface.
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where nqp denotes the number of quadrature points, j denotes transformation of the surface
area (according to dA = j wqp) and wqp denotes the weight of the quadrature point.
Further details, together with a closed-form expression of the contact stiffness matrix corre-
sponding to force f ec can be found in [28]. In the examples considered in this paper no external
forces are considered (fext = 0).

3 2D enriched contact elements

This section discusses the numerical difficulty that appears during peeling computations. A new
efficient enrichment strategy is presented that solves this problem. The enrichment is based on
local p-refinement and Hermite polynomials. The 2D case is considered first.

3.1 Numerical difficulties in peeling computations

In peeling computations a numerical difficulty appears for strong adhesion, which is illustrated
by the following simple 2D test case: Consider a strip with length ` = 200L0 and height
h = 10L0 adhering to a rigid substrate. The strip is peeled off the substrate by applying a
rotation θ at the right boundary, as is shown in Figure 2.a. A rotation is chosen since it yields

a. b.

Figure 2: a. Peeling of a 2D elastic strip (coloring represents stress I1 = trσ/E); b. Delamina-
tion stress σ33/E.

a constant moment during peeling. The strip is modeled by an isotropic, nonlinearly elastic
Neo-Hooke material with E = 2 GPa and ν = 0.2. Plain strain conditions are considered. 12
elements are chosen over the strip height h. Adhesive contact is considered along 75% of the
bottom surface (from x = 0 to x = 150L0), and the contact forces are described according
to eq. (8), using r0 = 0.4 nm and AH = 10−19 J, which are the values associated with gecko
adhesion.5 The length is set to L0 = 1 nm, so that the strip height approximately corresponds
to that of a gecko spatula [29]. At the delamination front large tensile stresses act on the strip as
can be seen from Figure 2.b, which shows the vertical stress component σ33. For the considered

5 Remark: The contact force T ck is modified according to Figure 1.c: the slope is kept constant for rs < 1.05req.
This corresponds to a penalty stiffness of 1.95E/L0 and a maximum penetration of 0.01 nm w.r.t. req for the
contact pressures observed in Figure 2.b.
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parameters the delamination zone is very small, and a very fine FE discretization is required to
resolve this zone.

From a certain rotation angle onward, the bending moment M , required to impose the rotation
θ, will remain constant, as is seen in Figure 3.a. The enlargement in Figure 3.b, however, shows

a. b.

Figure 3: Bending moment M(θ) for the peeling problem.

that the computed bending moment is not exactly constant but rather oscillates around a
mean value. This oscillation strongly affects the convergence rate during the Newton-Raphson
iteration used to solve this nonlinear problem. Especially the large negative slopes can lead
to poor convergence and loss of convergence even though the oscillations only occur in the
third decimal. Typically, the convergence rate alternates between faster and slower convergence
(with the same wavelength as the moment oscillations). The convergence behavior may actually
improve for a larger rotation step sizes, ∆θ, since for large steps one may jump over the stretches
where the slope is very steep.
The oscillation error is due to the discretization error in the contact forces; refining the mesh
will reduce its amplitude and wavelength (as is shown in Section 3.4.2). However, this will
also increase the computational cost substantially, unless an adaptive refinement is considered
at the delamination front. This on the other hand requires remeshing strategies, which are
not trivial, especially in 3D. Here, we are rather interested in a simpler and efficient way to
reduce the oscillation error. In the following sections two novel FE formulations are presented
that achieve this. The oscillation problem also occurs in sliding computations and the new FE
formulations also reduce the oscillation error there, as is shown in Section 5.2. Oscillations due
to discretization error can also be observed during nanoindentation computations [30].

3.2 Surface enrichment based on p-refinement

The inaccuracies reported above result from the poor approximation of the surface traction (8)
and its integration (15) for coarse surface meshes. Hence, it would be useful to improve the
accuracy of the surface description. The first idea, therefore, consists of a simple p-refinement
of the contact surface as is shown in Figure 4. This formulation can be developed from the
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Figure 4: Surface enrichment based on p-refinement: Enhanced contact element Q1C4 and its
map to the current domain.

standard 4-node quadrilateral, the Q1 element, which has the shape functions

N0
1 = 1

4(1− ξ)(1− η) ,

N0
2 = 1

4(1 + ξ)(1− η) ,

N0
3 = 1

4(1 + ξ)(1 + η) ,

N0
4 = 1

4(1− ξ)(1 + η) ,

(18)

to interpolate the displacement field6 according to

uhe =
4∑
I=1

N0
I uI . (19)

If an additional fifth node is placed at ξ = 0, η = −1, the modifications

N5 = 1
2(1− ξ2)(1− η) ,

N1 = N0
1 − 1

2N5 ,

N2 = N0
2 − 1

2N5 ,

(20)

are obtained [31]. N3 and N4 remained unchanged. In the interior of the element, the displace-
ment field now becomes

uhe =
5∑
I=1

NI uI . (21)

On the contact surface, considered at η = −1, this can be simplified into

uhe =
∑

I=1,2,5

NI uI . (22)

This element is combined with a standard Q1 formulation within the bulk, so that the interpo-
lation is linear in the bulk and quadratic on the surface. In the first element layer a transition

6In the following description, u and uh are used to denote the displacement field and its FE approximation,
uh

e is used to denote the approximate displacement field inside element Ωe, uI is used to denote the value of the
displacement at node I, ue is used to denote the stacked vector of all nodal displacements of element Ωe, and u
is used to denote the stacked vector of all nodal displacements of body Bh. Analogous definitions are used for
the reference configuration and the current configuration (characterized by the vector fields X and x). Note that
italic font is used for field variables and normal font is used for discrete variables.
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zone exists, (where the formulation is still quadratic, due to the influence of the surface nodes).
Formally this is written as

uh ∈ P1 in Bh ,
uh ∈ P2

s on ∂cBh ,
(23)

where P1 denotes the space of continuous, piecewise linear functions (bilinear to be precise) and
P2 denotes the space of continuous, piecewise quadratic functions, i.e.

Pp :=
{
u|Ωe ∈ Qp ∀Ωe ∈ Bh

}
with Qp :=

{
u(ξ, η) =

∑
0≤i,j≤p

cijξ
iηj
}

in Bh ,

Pps :=
{
u|Γe ∈ Q

p
s ∀Γe ∈ ∂Bh

}
with Qps :=

{
u(ξ) =

∑
0≤i≤p

ciξ
i
}

on ∂Bh ,
(24)

for some coefficients ci and cij [32]. The enriched 5-node quadrilateral satisfies the compact
support property

Na(ξb, ηb) = δab , (25)

at the nodes, and the partition of unity

5∑
I=1

NI = 1 ∀ ξ, η . (26)

Since the element is linear in the bulk and quadratic on the contact surface, it is denoted as
Q1C2 in the following. With this notation a standard displacement based contact formulation
is a Q1C1 finite element formulation. Since each node has two dofs, the Q1C2 element has 10
dofs in total.
Another example of the p-refinement of the contact surface is the Q1C4 element (see Figure 4),
an enriched 7-node quadrilateral with extra nodes at (ξ, η) = (0,−1), (−.5,−1) and (.5,−1),
that has the additional three shape function

N5 = 2(ξ4 − 5
4ξ

2 + 1
4)(1− η) ,

N6 = −4
3(ξ4 − 1

2ξ
3 − ξ2 + 1

2ξ)(1− η) ,

N7 = −4
3(ξ4 + 1

2ξ
3 − ξ2 − 1

2ξ)(1− η) ,

(27)

and the modifications
N1 = N0

1 − 1
2N5 − 3

4N6 − 1
4N7 ,

N2 = N0
2 − 1

2N5 − 1
4N6 − 3

4N7 .
(28)

For a FE mesh composed of Q1C4 elements on the contact surface and Q1 elements elsewhere,
one thus has

uh ∈ P1 in Bh ,
uh ∈ P4

s on ∂cBh .
(29)

Again, a transition zone exists within the surface elements. It can be confirmed that the Q1C4
element also satisfies the compact support property (25) and the partition of unity (26). The
Q1C4 element has 14 dofs in total.

In principle also higher p-enriched elements can be formulated. The notation Q1Cp is used to
denote a linear approximation in the bulk and a p-degree approximation on the surface. In
2D this element contains p + 1 surface nodes and has 2p + 6 dofs. The number of quadrature
points must be increased along with the polynomial degree. In general also QqCp elements
can be formulated with any q and p. Useful for contact is p > q. However, one should be
aware of the Gibbs-oscillations that can occur for high order interpolation (see Section 5.2).
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The enrichment formulation, which is formulated here for quadrilateral elements, can also be
extended to triangular or other elements.

The computation of the internal force vector fint and the contact force vector fc, as well as
the corresponding stiffness matrices kint and kc, follows from the same procedure as for the
standard Q1 element by simply adjusting the number of nodes in the sums required to compute
the deformation gradient F = ∂x

∂X and the Jacobian matrix J = ∂x
∂ξ

and adjusting the matrix
size of fint, fc, kint and kc; see Appendix A.

In 2D, one can easily perform the static condensation of the additional enrichment unknowns
at the element level, see [6]. The advantage of this is that the enrichment unknowns do not
need to be considered in the global equation system.

3.3 Surface enrichment based on Hermite interpolation

The second enrichment idea consists of using a Hermite interpolation along the contact surface
such that the interpolation becomes C1 continuous on the surface. Such an element has six
nodes: four standard nodes for approximating the displacement and two additional surface
nodes approximating the surface derivative (see Figure 5).

Figure 5: Surface enrichment based on Hermite interpolation: Enhanced contact element Q1CH
and its map to the current domain.

The Hermite smoothed 6-noded quadrilateral is given by the FE interpolation

uhe =
4∑
I=1

NI uI +
2∑
I=1

HI uI,ξ (30)

and the Hermite shape functions

N1(ξ, η) = 1
8(ξ − 1)2(2 + ξ)(1− η) ,

N2(ξ, η) = 1
8(ξ + 1)2(2− ξ)(1− η) ,

(31)

and
H1(ξ, η) = 1

8(ξ + 1)(ξ − 1)2(1− η) ,

H2(ξ, η) = 1
8(ξ + 1)2(ξ − 1)(1− η) .

(32)

Shape functions N3 and N4 are the same as for the standard quadrilateral (18). Interpolation
(30) satisfies the compact support property (25) and the partition of unity to represent constant
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uhe and constant uhe,ξ, i.e.

4∑
I=1

NI uI +
2∑
I=1

HI uI,ξ = 1 ∀ ξ, η (33)

for uI = 1 and uI,ξ = 0 and

4∑
I=1

NI,ξ uI +
2∑
I=1

HI,ξ uI,ξ = 1 ∀ ξ, η (34)

for u1 = u4 = c− 1, u2 = u3 = c+ 1 and uI,ξ = 1, where c is an arbitrary constant.

At the contact surface η = −1, so that then

uhe =
2∑
I=1

(
NI uI +HI uI,ξ

)
, (35)

which is the usual Hermite interpolation in 1D, e.g. see [33]. The additional degrees of freedom
introduced by H1 and H2 correspond to a nodal enrichment at node 1 and 2, which is marked
by two short horizontal lines in Figure 5. This enrichment bears some resemblance to the
nodal enrichment considered by the XFEM [7]. The new contact FE formulation according to
eq. (30) is denoted as Q1CH3, or Q1CH in short, since the displacement field is interpolated
by third order Hermite polynomials along the contact surface. The Q1CH element has 12 dofs
in total. This element is combined with a standard Q1 formulation within the bulk. Hence the
interpolated displacement field uh is continuous (C0) in the entire domain, Bh, and continuously
differentiable (C1) on the entire contact surface, ∂cBh, i.e.

uh ∈ C0 ∀x ∈ Bh ,

uh ∈ C1 ∀x ∈ ∂cBh .
(36)

According to the isoparametric concept, the Hermite interpolation (30) is also used to approx-
imate the element configuration itself, i.e.

Xh
e =

4∑
I=1

NI XI +
2∑
I=1

HI XI,ξ , (37)

for the undeformed reference configuration and similarly for the current configuration xhe .

The nodal displacement derivatives uI,ξ, which refer to the master element coordinate system,
can be transformed to the reference coordinate system according to

uI,ξ =
∂S

∂ξ
uI,S , (38)

where S denotes the arc length along the reference configuration of the contact surface ∂cB0.
Thus eq. (30) becomes

uhe =
4∑
I=1

NI uI +
2∑
I=1

HI
∂S

∂ξ
uI,S . (39)

Here uI,S is the nodal value describing the derivative of uh along the reference surface such that

∂uh

∂S

∣∣∣
XI ∈ ∂B

= uI,S , (40)
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similarly to the nodal identity
uh(XI) = uI . (41)

Here in 2D,
∂S

∂ξ
=
Lc
2
, (42)

where Lc is the surface distance between nodes 1 and 2 in the reference configuration. It is more
natural to prescribe uI,S instead of uI,ξ. The nodes of the current configuration are updated
according to

xI = XI + uI and xI,S = XI,S + uI,S , (43)

where uI and uI,S are obtained from solving the FE equilibrium equation. For the peeling
example in Section 3.1, S runs parallel to e1, so that

XI,S = e1 ∀ I . (44)

Given (39), the displacement gradient follows as

∂uhe
∂x

=
4∑
I=1

uI ⊗
∂NI

∂x
+

2∑
I=1

uI,S
∂S

∂ξ
⊗ ∂HI

∂x
, (45)

with
∂NI

∂x
=
∂ξ

∂x

∂NI

∂ξ
and

∂HI

∂x
=
∂ξ

∂x

∂HI

∂ξ
, (46)

where ∂ξ
∂x = J−1 is given by eq. (55) in Appendix A. It is convenient to denote N5 := H1,

N6 := H2 and u5 := u1,ξ, u6 := u2,ξ, so that eqs. (30) and (45) can be simply written as

uhe =
6∑
I=1

NI uI and
∂uhe
∂x

=
6∑
I=1

uI ⊗
∂NI

∂x
. (47)

With this notation one can use the same computational element routine as for the Q1Cp element,
using only minor adjustments, see Appendix B.

Figure 6 shows the improvement in the surface deformation achieved by the Q1CH element.
The improvement is particularly large at the delamination zone where it is needed most, and
one can therefore expect a significant improvement resulting from this formulation. This is
demonstrated in Section 3.4.2 and Section 5. Figure 6 also shows that the contact enrichment
is only needed in a short surface region consisting of three to five surface elements. Thus an
adaptive enrichment strategy can be used that moves the zone of enriched elements along with
the peeling front.

The formalism presented above can also be used to derive an enhanced contact element that
is C2 on the surface (the Q1CH5 element). One can also combine the p enrichment and the
Hermite enrichment strategies.

3.4 Comparison

This section analyzes the computational performance of the new enhanced contact elements.
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a. b.

Figure 6: Surface smoothing achieved by the Q1CH element in the peeling example described
in Section 3.1: a. Deformed configuration obtained with only four elements over the height; b.
Enlargement of a. at the peeling front.

3.4.1 Bending performance

During peeling large bending deformations can occur and it therefore becomes important to
analyze the FE accuracy for bending. We consider the strip of Section 3.1, subject it to pure
bending (without considering any contact) and compare the convergence behavior of the new
element formulations Q1C2, Q1C4 and Q1CH. For reference we also include the behavior of the
bilinear Q1 element and the nonlinear enhanced strain element Q1E4 [6], which is very accurate
in bending. In many applications only a small surface region may need a contact enrichment.
To account for this, not all surface elements are enriched and only a short patch covering a.
75% and b. 10% of the bottom surface is modeled with the new contact elements. Altogether
six cases are considered that are obtained by combining the enhanced contact elements with
standard elements (see Table 1). The performance of these six cases is shown in Figure 7. The

case surface elements remaining elements
1 Q1 Q1
2 Q1 Q1E4
3 Q1C2 Q1E4
4 Q1CH Q1E4
5 Q1C4 Q1E4
6 Q1E4 Q1E4

Table 1: FE formulations considered in the pure bending example.

figure shows that the bending performance of the new enhanced contact elements is much better
than that of the Q1 element. The new elements perform almost equally well. The accuracy
ranking corresponds to the order given in Table 1. The ‘error’ shown in Figure 7 is measured
relative to a highly accurate solution obtained with the Q1E4 formulation on a fine mesh with
m = 5. Further, during mesh refinement the relative number of enhanced contact elements
(denoted Q1CX collectively) decreases (see Table 2), so that the rate of convergence quickly
approaches that of the Q1E4 formulation. The relative decrease of the Q1CX elements shown
in Table 2, also implies that the computational cost between standard and enriched formulation
becomes less significant during mesh refinement. The example shows that the new contact
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a. b.

Figure 7: Discretization error of the different enrichment formulations during pure bending.
Ratio of the bottom surface covered by Q1CX elements: a. 75%; b. 10%; 2m is the number of
elements across the height of the strip.

mesh nel ncel for 75% ncel for 10%
m = 1 80 30 (37.5%) 4 (5%)
m = 2 320 60 (18.25%) 8 (2.5%)
m = 3 1280 120 (9.38%) 16 (1.25%)
m = 4 5120 240 (4.69%) 32 (0.63%)

Table 2: Number of contact elements ncel compared to the number of total elements nel for 75%
and 10% surface coverage in the pure bending example.

elements will not cause locking in bending.

In principle the enhanced contact element formulation can also be combined with a enhanced
strain element formulation like the Q1E4 element. The results of Figure 7 indicate that this
would only be important if few elements over the thickness are used, e.g. in solid-shell formu-
lations.

3.4.2 Peeling analysis

We now revisit the peeling example of Section 3.1 and report the improved accuracy obtained
with the contact formulations Q1C2, Q1C4 and Q1CH, developed in Section 3.2 and 3.3. For
the analysis we examine the oscillations in the moment-rotation curve shown in Figure 3. In
theory there should be no oscillations, as the moment is constant.7 The oscillation error is
characterized by the amplitude ∆M , by the average moment ave(M), by the wavelength ∆θ
and the maximum, minimum and average values of the slope M,θ = ∂M/∂θ. Table 3 shows
the numeric values obtained for three different meshes, considering ny = 8, 12 and 16 elements
across the strip height.

One can observe a substantial decrease of ∆M and M,θ. This is also shown in Figure 8. Thus,
the enriched contact elements are much more accurate in peeling than the original Q1C1 contact
formulation. The relative improvement for ny = 12 elements is shown in Table 4. Compared

7Considering linear beam theory, this problem can be solved analytically [34].
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element ny ∆M ∆θ max(M,θ) min(M,θ) ave(M,θ) ave(M)
Q1C1 8 – – – – – –
Q1C2 8 4.612e-03 1.363e+00 5.539e-03 -1.003e-01 8.3872e-07 1.641467e+00
Q1C4 8 1.798e-03 1.363e+00 2.998e-03 -6.619e-03 8.3425e-07 1.641475e+00
Q1CH 8 1.011e-03 1.364e+00 1.689e-03 -3.597e-03 8.2969e-07 1.641532e+00
Q1C1 12 2.267e-03 9.081e-01 4.699e-03 -2.355e-02 9.5827e-07 1.641565e+00
Q1C2 12 6.082e-04 9.090e-01 1.806e-03 -2.461e-03 9.1761e-07 1.641406e+00
Q1C4 12 2.283e-04 9.090e-01 7.553e-04 -7.978e-04 9.1759e-07 1.641402e+00
Q1CH 12 1.491e-04 9.090e-01 4.795e-04 -5.621e-04 9.1731e-07 1.641411e+00
Q1C1 16 2.684e-04 6.812e-01 1.131e-03 -1.385e-03 9.8713e-07 1.641449e+00
Q1C2 16 9.144e-05 6.815e-01 3.958e-04 -4.388e-04 9.8360e-07 1.641384e+00
Q1C4 16 4.050e-05 6.815e-01 1.764e-04 -1.902e-04 9.8371e-07 1.641383e+00
Q1CH 16 2.031e-05 6.819e-01 9.277e-05 -9.508e-05 9.8375e-07 1.641386e+00

Table 3: Analysis of the peeling moment for the various element formulations.

a. b.

Figure 8: Improvement due to the different contact enrichments for: a. ny = 12 elements along
the strip height h; b. ny = 16 elements along h.

to the Q1C1 formulation, the oscillation error reduces by a factor of 3.7 for the Q1C2, by a
factor 10 for the Q1C4 and by a factor of 15 for the Q1CH formulation! The reduction of the
downward slope, critical for convergence, is even more pronounced, as the table shows. In order
to obtain highly accurate results, 50 equidistant quadrature points are used for evaluating (17).
The reduction of the oscillation amplitudes and slopes lead to a more robust computational
performance that requires less Newton iteration steps. The case for ny = 8 does not even
converge for the original Q1C1 contact formulation. The wavelength of the oscillations is equal
for all formulations since it only depends on the mesh size. Table 3 shows that a simple h-
refinement will also decrease the oscillation error substantially. However, a uniform h-refinement
is very expensive, and an adaptive h-refinement is non-trivial, especially in 3D.

The major advantage of the enhanced contact element formulation is that no remeshing step is
required: The Q1C2, the Q1C4 and the Q1CH formulations use the same mesh as the standard
Q1C1 formulation.
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contact formulation oscillation error downward slope error
Q1C1 100% 100%
Q1C2 26.8% 10.5%
Q1C4 10.1% 3.39%
Q1CH 6.58% 2.39%

Table 4: Improvement achieved by the new contact elements: Reduction of the oscillation error
∆M and the downward slope error min(M,θ) for ny = 12 compared to the Q1C1 formulation.

4 3D contact enrichment elements based on p-refinement

Due to the success of the contact enrichment in 2D, we now extend the concept to 3D and
demonstrate its improvement on an important application. We therefore consider the extension
of the Q1C2 element presented in Section 3.2 to 3D. To satisfy property (23) in 3D, the Q1C2
element requires 9 nodes on the contact surface and 4 nodes in the interior as shown in Figure 9.

Figure 9: 3D surface enrichment based on p-refinement: 3D enhanced contact element Q1C2
and its map to the current domain.

The standard shape functions for the trilinear quadrilateral with eight nodes are given by

N0
I = 1

8(1 + ξIξ)(1 + ηIη)(1 + ζIζ) , I = 1, 2, ..., 8 , (48)

where (ξI , ηI , ζI) are the corner coordinates of the master brick that are given by the 8 combi-
nations of (±1,±1,±1). If this formulation is used for contact we speak of the Q1C1 element.

For the Q1C2 element the shape function at the interior nodes, N5, N6, N7 and N8, are the
same as above. For the nine surface nodes, standard biquadratic shape functions are used and
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multiplied by 1
2(1− ζ) to obtain

N1 = 1
8(ξ2 − ξ)(η2 − η)(1− ζ) ,

N2 = 1
8(ξ2 + ξ)(η2 − η)(1− ζ) ,

N3 = 1
8(ξ2 + ξ)(η2 + η)(1− ζ) ,

N4 = 1
8(ξ2 − ξ)(η2 + η)(1− ζ) ,

N9 = 1
4(1− ξ2)(η2 − η)(1− ζ) ,

N10 = 1
4(ξ2 + ξ)(1− η2)(1− ζ) ,

N11 = 1
4(1− ξ2)(η2 + η)(1− ζ) ,

N12 = 1
4(ξ2 − ξ)(1− η2)(1− ζ) ,

N13 = 1
2(1− ξ2)(1− η2)(1− ζ) .

(49)

The 13 shape functions of the 3D Q1C2 element satisfy the partition of unity (26) and the
compact support property (25). The displacement field within the element then follows from
the interpolation

uhe =
13∑
I=1

NI uI . (50)

At the contact surface (ζ = −1), shape functions N5 to N8 are zero, so that the sum can
be simplified. Since each node has three dofs, the 3D Q1C2 element has 39 dofs in total. The
internal force vector f eint and the contact force vector f ec are easily found as described in Section 2
and Appendix A. If a FE routine is available for the Q1C1 element, the extension to the Q1C2
element is straightforward (see Appendix A).

A transition element is required to connect the Q1C2 element to a Q1 element. Such a transition
element, denoted as Q1T2 in the following, consists of a standard 8-node brick element with
one additional node along one edge. Without loss of generality, this node is denoted as node 9
and is placed between nodes 1 and 2. The shape functions for node 3 to 8 are the same as for
the Q1 element. New are

N1 = 1
8(ξ2 − ξ)(1− η)(1− ζ) ,

N2 = 1
8(ξ2 + ξ)(1− η)(1− ζ) ,

N9 = 1
4(1− ξ2)(1− η)(1− ζ) .

(51)

Similar transition elements with one additional node along two or three edges can be constructed.
In order to connect the Q1T2 element to the Q1C2 element, a rotation of the Q1T2 element
may be required. Instead of employing transition elements one may also use a hanging node
technique.

A 3D version of the Q1C4 element can be obtained analogously; it contains 29 nodes (25 nodes
in the contact surface and 4 nodes on the top). A 3D version of the Q1CH formulation is more
complicated, since the construction of a C1 continuous surface formulation is not straightforward
in 3D. This will be subject of future research.

Static condensation of the enrichment nodes can also be performed in 3D. For that one can first
condense the internal nodes (e.g. node 13 for Q1C2) and then loop over all enriched FE edge
segments to condense the edge nodes (e.g. nodes 9, 10, 11 and 12 for Q1C2). However, no real
advantage is seen in doing this at present.

The number of quadrature points should be increased along with the polynomial. For the
application in Section 5.1, 2 × 2 × 2 Gauss points are used per Q1 element, 3 × 3 × 3 Gauss
points are used for the bulk integral of the Q1C2 element and 5× 5 Gauss points are used for
the surface integral.
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5 Numerical examples

5.1 Peeling of a gecko spatula

The following 3D example considers the peeling behavior of an adhering gecko spatula. Both
the new Q1C2 and the standard Q1C1 contact elements are considered and it is seen that the
Q1C2 element constitutes a major improvement. The gecko spatula (Figure 10.a) consists of
a thin and highly flexible adhesive pad that is about 300 nm long and 200 nm wide but only
about 10 nm thick in the middle [29]. The pad is attached to a circular shaft that is about
700 nm long. The geometrical details of the 3D spatula structure are reported in [35] and [36].

a. b.

Figure 10: a. Geometry of the gecko spatula; b. Peeling of the spatula showing large stresses
at the peeling front. The colors show the stress I1 = trσ normalized by E.

The spatula is modeled as an isotropic Neo-Hookean solid with E = 2 GPa and ν = 0.2. The
adhesion of the pad is modeled according to eq. (8) with the parameters AH = 10−19 J and
r0 = 0.4 nm. The adhesive contact is considered frictionless here. Figure 10.b shows the peeling
of the spatula for an applied vertical pull-off force. The inclination of the spatula shaft w.r.t.
the peeling plane is kept fixed at 60◦. The coloring shows the first stress invariant I1 = trσ of
the Cauchy stress tensor. The values range from −0.115E (dark blue) to 0.135E (dark red).
On the contact surface of the pad large peeling stresses appear, as is shown in the figure. The
largest peeling stresses that occur are 0.0618E according to eq. (10). The finite element mesh
of half the spatula contains about 100,000 brick elements. All elements in the contact surface
are considered as Q1Cp elements, the remaining (bulk and surface) elements are Q1 elements.
For this mesh, the largest surface diameter of the contact elements is 2.87 nm. Considerable
variation of the van der Waals adhesion force occurs over such a distance (see Figure 1). In fact
the Q1C1 contact formulation is inappropriate for this mesh and fails to converge during the
computation if large displacement increments are used.
Figure 11 shows the load-displacement curve of the peeling process. The white points at 0 nm,
60 nm, 120 nm and 180 nm correspond to the four configurations shown in Figure 10.b. The
maximum pull-off force is 6.7 nN which lies within the experimental range observed in [37] and
[38]. The enlargement displayed in Figure 11.b shows that the Q1C1 contact formulation is
affected by the kind of oscillations observed in the simple 2D example of Section 3.1. The Q1C2
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a. b.

Figure 11: a. Peeling forces for a prescribed vertical displacement of the spatula; b. Enlargement
of a.

formulation improves this decisively: The oscillations are reduced significantly (thus increasing
the computational accuracy) so that the Newton-Raphson iteration converges faster and the
overall simulation runs more stable. The adhesion strength can even be increased by 50%,
a case which fails to converge for the Q1C1 formulation. This improvement comes at little
numerical extra cost: The number of dofs only increases by 23.5%, as is shown in Table 5.
This is still more than 5 times less dofs than for a fully quadratic FE formulation (Q2C2). It

contact formulation number of FE dofs
Q1C1 101728 Q1 elements 343242

of which 8896 are Q1C1
Q1C2 92664 Q1 elements 423834

+ 8896 Q1C2 elements
+ 168 transition elements

Q2C2 101728 Q2 elements ≈ 2.5 · 106

Table 5: Number of degrees-of-freedom (dofs) for the 3D spatula peeling problem.

is expected that the Q1C4 formulation will produce even smoother results, as would a three-
dimensional Q1CH implementation, which is subject of future research. A detailed study of the
spatula peeling for different parameters and boundary conditions is considered in [36].

5.2 Ironing problem

The enriched contact element formulation is also advantageous for sliding contact computations,
which is demonstrated next. Therefore, the frictionless sliding of a rigid cylinder over a soft
elastic block is considered, as shown in Figure 12. The radius of the cylinder is L0 and the block
dimensions are 2L0×10L0. The bottom surface is fixed in all directions and a periodic boundary
condition is applied at the sides. The problem is normalized by the length L0 and Young’s
modulus E. Poisson’s ratio is chosen as ν = 0.3. Plane strain conditions are considered, such
that the computation can be performed in 2D. In each dimension, four elements are used along
L0. Contact is modeled by the penalty method according to eq. (13) using a normalized penalty
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Figure 12: Ironing problem: frictionless sliding contact between a rigid cylinder and a soft
block. The coloring shows the stress I1 = trσ normalized by E.

parameter of εn = 100 (i.e. normalized by E/L0). A similar sliding example is considered in
[39] and [40].

The cylinder is pressed into the block by imposing a vertical displacement of 2/3L0. Keeping
the vertical displacement constant, a horizontal displacement is then applied to the cylinder.
Figure 13 shows the net contact forces Px and Py as a function of the horizontal sliding distance.
In theory, the horizontal contact force should be identically zero, while the vertical contact force

a. b.

Figure 13: Net contact force between cylinder and block in dependance of the sliding distance
ux: a. Horizontal contact force Px; b. Vertical contact force Py.

should be constant. Numerically, both force components oscillate about a mean value with the
wavelength L0/4 (i.e. the length of one finite element). As Figure 13 shows, the oscillations
reduce significantly for the new enhanced contact formulations. Table 6 lists the amplitudes
of Px and Py. One can observe that the oscillation in Px are reduced by a factor of 3 for the
Q1C2 formulation, by a factor of 8 for the Q1CH formulation and by a factor of 13 for Q1C4
formulation. 100 equidistant quadrature points are used to evaluate the contact integral (17) to
high accuracy for each element. The improvement obtained by the new contact elements is quite
similar to the improvement observed during peeling (see Figure 8). According to Figure 13,
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element ∆Px ∆Py ave(Py)
Q1C1 1.0706 10−2 4.0265 10−3 0.86401
Q1C2 3.1447 10−3 2.4368 10−4 0.86161
Q1C4 7.8114 10−4 1.0326 10−4 0.86142
Q1CH 1.3626 10−3 3.9694 10−4 0.86150

Table 6: Performance of the enhanced contact elements for the frictionless ironing example (see
Figure 12).

formulation Q1C4 performs better than the Q1CH formulation.

Figure 14 shows an enlargement of the contact deformation and stress8 for the original Q1C1
formulation and the three new enrichment formulations Q1C2, Q1C4 and Q1CH. The stress

a. b.

c. d.

Figure 14: Enlargement of the contact deformation and I1 stress according to the: a. Q1C1
formulation; b. Q1C2 formulation.; c. Q1C4 formulation; d. Q1CH formulation.

coloring for these four enlargements is the same as shown in Figure 12. Enlargement (a) shows
the poor surface approximation achieved for the Q1C1 formulation. In contrast, the Q1C2
formulation performs much better. Close observation, however, shows that the surface has kinks,
i.e. the deformation is not C1 as is the case for the Q1CH formulation shown in enlargement (d).

8The stress field is generated from interpolating the nodal stress values, which in turn are obtained from a
least square minimization of the error between interpolated stresses and quadrature point stresses.
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Close inspection of the Q1C4 result (enlargement (c)) reveals oscillations in the stress field. Such
oscillations are characteristic for high order polynomial interpolations. They indicate that the
polynomial degree should not be chosen too large.
As a final consideration, the pressure distribution between the contacting bodies is examined,
as it is defined by eq. (13). This is shown in Figure 15 for the four different contact element
formulations. It is seen that the original Q1C1 formulation yields a highly inaccurate and

a. b.

c. d.

Figure 15: Contact pressure according to the: a. Q1C1 formulation; b. Q1C2 formulation.; c.
Q1C4 formulation; d. Q1CH formulation. The dark dots show the pressure at the standard FE
nodes, the white dots show the pressure at the enrichment nodes.

oscillatory pressure field.9 The accuracy improves considerably for the enriched contact elements
Q1C2, Q1C4 and Q1CH. In terms of smoothness, the Q1CH formulation provides the best
results. In the figure, the black dots mark the pressure at the FE corner nodes, while the white
dots mark the pressure at the enriched FE nodes. The configuration considered here is the same
as the one shown in Figure 12 and 14. It should be noted that the actual distribution of the
pressure has a somewhat limited significance, since, numerically, equilibrium is only enforced
for the nodal averages obtained from integration (15).

In view of the behavior observed in Figures 13, 14 and 15, and in view of the results obtained
in Section 3.4.2, we conclude that the enhanced Q1CH formulation performs best.

9If one only considers the nodal values, or the elemental midpoints, as is sometimes done, the pressure will
appear much smoother.
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6 Conclusion

During peeling sharp stresses can appear at the peeling front, which cause considerable difficul-
ties in standard FE contact formulations. This paper provides an improved contact formulation,
that is efficient, simple and effective. The formulation is based on the enrichment of the contact
surface description at the element level in order to improve the evaluation and integration of
the contact forces, even for coarse FE meshes. Thus, a class of new enhanced contact finite
elements is developed, using two different enrichment techniques: The first consists of a p-
refinement of the contact surface, and the associated new contact element is denoted as Q1Cp
element, where p = 1, 2, 4 have been considered. This idea is formulated both in 2D and 3D.
The second technique consists of an Hermite enrichment, which is C1 on the contact surface
but C0 elsewhere, and the associated contact element is denoted as Q1CH element. The new
elements show a major improvement in peeling and sliding computations, as is demonstrated
by several numerical examples. Among those is the peeling computation of a gecko spatula.
The examples indicate that the Q1CH element performs best among the new enriched contact
elements.

For future work, several extensions are planned. The first major extension is to formulate and
implement a three-dimensional version of the Q1CH contact element. Such an element requires
a C1 continuous 3D surface description, which is not straightforward to develop. The expected
benefit will be a highly efficient and accurate contact formulation. Further considerations are
the extension to frictional contact and the extension to contact between deformable bodies.
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A Outline of the FE bulk equations for the enriched elements

Within a finite element, the deformation x = X + u is approximated by the interpolation

xhe =
nen∑
I=1

NI xI , (52)

where NI are the shape functions of the element and nen is the number of element nodes, which
is nen = 4 for Q1C1, nen = 5 for Q1C2, nen = 6 for Q1CH or nen = 7 for Q1C4 in 2D and
nen = 8 (Q1C1), nen = 13 (Q1C2), nen = 9 (Q1T2) or nen = 29 (Q1C4) in 3D, respectively.
The interpolation of Xh

e and uhe is analogous. The deformation gradient F e, corresponding to
xhe , can be obtained from the inversion of

∂X

∂x
≈ F−1

e =
nen∑
I=1

XI ⊗∇xNI , (53)

where ∇xNI denotes the gradient of shape function NI w.r.t. x, which can be obtained through

∇xNI = J−Te ∇ξNI , (54)

where
∂x

∂ξ
≈ Je =

nen∑
I=1

xI ⊗∇ξNI (55)
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is the deformation gradient between master element and the current element configuration and
where ∇ξNI denotes the vector of derivatives NI,ξ, NI,η and NI,ζ , which can be easily obtained
from the shape functions given in Sections 3.2, 3.3 and 4. The Cauchy stress tensor follows from
the constitutive law. In this paper a Neo-Hookean material model is considered in the form

σ =
Λ
J

ln J I +
µ

J

(
FF T − I

)
, (56)

where J = detF . Given ∇xNI , the B-Matrix Be = [B1 B2 · · · Bnen ] is formed by the blocks

BI =



NI,x1 0 0
0 NI,x2 0
0 0 NI,x3

0 NI,x3 NI,x2

NI,x3 0 NI,x1

NI,x2 NI,x1 0

 . (57)

The internal force vector then follows as

f eint =
∫

Ω�

BT
e σ detJ d� , (58)

which is in the same form as for standard displacement-based finite elements. The dimension of
f eint is (3nen × 1) in 3D. Also the stiffness matrix is in the usual form and can be found in [33].

B Implementation remarks on the Q1CH element

In the FE implementation of the Q1CH element, it is convenient to use the nodal variable uI,ξ
within the element routine and variable uI,S outside of the element routine. They are related
according to

uI,ξ = S,ξ uI,S , (59)

with
S,ξ :=

∂S

∂ξ
=
Lc
2

(60)

in 2D. Here Lc is the contact element length, i.e., the surface distance between nodes 1 and 2
in the reference configuration. It is emphasized, that the contact elements do not need to be
equidistant across the mesh. If they are not equidistant, one simply has different values for uI,ξ
between adjacent elements, which does not pose any difficulties.

The force vector and tangent matrix of the Q1CH element are computed as specified in Ap-
pendix A. These two arrays now refer to the uI,ξ system and thus need to be transformed back
to the uI,S system, which is used outside the element. The components of the displacement
vector u are therefore grouped according to

u =
[
uN
u,S

]
, (61)

where uN contains all nodal displacements uI (I = 1, ..., 4) and u,S contains all nodal displace-
ment derivatives uI,S (I = 1, 2). These are transformed according to eq. (59), so that we can
denote

u,ξ := S,ξ u,S (62)
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as the vector that contains all nodal displacement derivatives uI,ξ. Note that S,ξ can change
between elements.

The Newton-Raphson method is used to solve equilibrium iteratively. At each iteration step
the matrix equation k ∆u = −f is solved for the displacement increment ∆u. According to
definition (61) we write [

kNN kN,S
k,SN k,S,S

] [
∆uN
∆u,S

]
= −

[
fN
f,S

]
(63)

in the uI,S system or [
kNN kN,ξ
k,ξN k,ξ,ξ

] [
∆uN
∆u,ξ

]
= −

[
fN
f,ξ

]
(64)

in the uI,ξ system. According to eq. (62) this yields the following relations at the element level
between the force vector and stiffness matrix contributions:

f e,S = S,ξ f e,ξ , (65)

keN,S = S,ξ keN,ξ , (66)

ke,SN = S,ξ ke,ξN , (67)

ke,S,S = S2
,ξ k

e
,ξ,ξ . (68)

In the implementation of the Q1CH element we then proceed as follows: At the start of the
element routine, we transform the element displacement vector to the ξ-system according to
eq. (62). We then compute the force and stiffness arrays in the ξ-system, and transform them
back into the S-system according to eqs. (65)–(68). Outside the element we only work in the
S-System.
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