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Abstract: This work studies optimal shapes of peeling films considering different peeling di-
rections. A cohesive zone model is used to capture normal and tangential forces during peeling.
The strip is modeled by nonlinear finite elements based on geometrically exact beam theory.
Criteria for optimization are proposed that account for the strain energy during deformation,
the overall peeling energy, and the maximum peeling forces. These criteria are first analyzed for
various test geometries and then considered for computational optimization. Two cases are con-
sidered: Optimization for single direction and optimization for multiple directions. The latter
allows the determination of strip shapes that provide strong attachment and easy detachment
under different peeling angles.

Keywords: computational shape optimization, adhesive tapes, cohesive zone models, peeling
angle, gecko adhesion

1 Introduction

Flexible and strongly adhesive structures that are easily removable from the substrate are
important for many applications, such as the fabrication of reusable adhesive tapes or the
adhesion mechanisms of various insects and lizards. Hence they have been subject of numerous
investigations. The anisotropic attachment and detachment behavior of the microstructures
underneath gecko toes, for instance, has been investigated by many researchers, e.g. by Autumn
et al. [2, 1], Tian et al. [16], Chen et al. [4] and Zhao et al. [18, 19].

One of the most widely used approaches for studying direction-dependent peeling of thin strips
is to consider the analytical model of Kendall [6], see e.g. [4, 3]. The Kendall model however,
does not account for the bending stiffness and the shear flexibility of the peeling strip.

To understand and improve the adhesion properties of thin adhesives, the influence of the
shape on the peeling behavior has been investigated for vertical peeling both theoretically
[14, 13, 5] and numerically [15, 8, 7]. Silves et al. [15], for instance, have designed the width
and the adhesion distribution of thin beams for a prescribed force-displacement dependence,
using topology optimization. Recently, Mergel et al. [7] have proposed essential criteria and
guidelines for the shape optimization of adhesive microstructures. They have performed both
a detailed benchmark study and computational optimization for different parameters. In both
studies, however, the authors have considered only a perpendicular peeling direction. The main
purpose of this paper is therefore
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1. To investigate the optimum shape of thin and flexible structures that can resist large
external peeling forces for various peeling directions and

2. to obtain strongly adhesive strips that can be released easily for a certain direction.

Since the structures considered here are thin and elongated, we model the peeling strip as a
beam, using the beam formulation of Sauer and Mergel [12]. The adhesion between the strip
and a rigid, planar substrate is modeled by a cohesive zone model. In general, the formulation
considered here can be used for applications of arbitrary dimension, e.g. for the shape optimiza-
tion of structures at both the nano-scale or macro-scale. One very promising application is the
optimization of bio-inspired adhesives based on the adhesion mechanisms of insects and lizards.
This, however, is outside the scope of the current work. Here, our aim is rather to provide an
insight into optimum shapes for directional peeling in general.

The remaining sections of this paper are structured as follows: Section 2 briefly outlines the
beam model equations and the shape optimization problem considered here. The peeling be-
havior of different test geometries is discussed in Section 3. Section 4 presents peeling strip
geometries obtained from computational optimization. Section 5 finally concludes this paper.

2 Modeling

This section discusses the problem setup and summarizes the governing equations describing
the mechanical behavior of the peeling strip. We define the contact formulation applied for
the interaction between the strip and the substrate. Afterwards, we provide the criteria and
constraints of the considered optimization problem. For a numerical solution the resulting
equations are discretized within a finite element framework, which is not discussed here. See
[12, 7] for a more detailed derivation.

2.1 Setup

The thin strip that we are investigating here has length L and a rectangular cross-section. Its
height H(S) and width B(S) may vary along S ∈ [0, L]. The right part of the strip with
length Lc adheres to a planar and rigid substrate. Figure 1 shows the peeling strip in the
initial configuration. Since the thickness of the strip is considerably smaller than its length we

Figure 1: Initial configuration of the peeling strip.

consider, for the sake of simplicity, the beam axis as initially straight.3 The strip is peeled from
the substrate by prescribing a displacement u with magnitude u := ||u|| at the left boundary.

3We assume that the arising error is small compared to the approximation error of beam theory.
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As shown in the figure, the resulting reaction force P (u) is inclined from the surface normal of
the substrate, ns, by the angle α, i.e.

P · ns = P · cosα , P := ||P || , α ∈ [−90◦, 90◦] . (1)

We note that studies based on the Kendall model usually consider the peeling angle θ = 90◦−α,
see the figure. Since we want to preserve the positive sense of rotation in the (X,Y )-plane,
however, we use α in the following.

2.2 Balance of work

For the peeling strip we use the two-dimensional beam formulation of Sauer and Mergel [12].
This formulation, which is only outlined here, is based on the geometrically exact theory by
Reissner [9]. It accounts for finite deformation and strains due to elongation, bending, and
shearing of the beam. For a prescribed displacement, u, the balance of work is given in incre-
mental form by

dΠint + dΠc − dΠext = 0 , (2)

see e.g. [10, 12]. Here, dΠint denotes the internal energy due to elastic beam deformation, dΠc

the contact energy, and dΠext the externally applied work. The three terms are given by [12]

dΠint =

∫
L

dεTDε dS , dΠc = −
∫
L

ddT

[
T c

Mc

]
B dS , dΠext = P (u) · du , (3)

where d contains the X- and Y -displacements and the rotation of the beam section plane, and
ε is composed of the axial, shear, and bending strains. Considering a linear elastic material
behavior with Young’s modulus, E, and a shear modulus, G, we obtain for the material tensor
D = diag

(
EA , GAs , EI

)
. The area, A, effective shear area, As, and second moment of area, I,

are given for a rectangular beam cross-section by A = HB, As = 5/6A, and I = 1/12H3B [12].
The following section defines the contact traction, T c, and the distributed contact moment, Mc,
that act at every point on the beam axis along L.

2.3 Contact formulation

Recently, Mergel et al. [7] have used a van der Waals adhesion model in order to optimize
the shape of thin strips peeled perpendicularly from a substrate. The model considered in
that study, however, does not account for tangential contact. It is therefore not suitable for
modeling peeling in any other than the normal direction of the substrate surface. In order to
include tangential contact, we apply the exponential cohesive zone model (CZM) by Xu and
Needleman [17] here, see also [11, 12],

TCZM =

{
− T0

g0
exp

(
1− ||gs||

g0

)
gs for S ∈ [L−Lc, L] ,

0 for S ∈ [0, L−Lc) ,
(4)

where T0 and g0 are cohesion parameters. As we consider an initially straight beam axis for this
study, we simplify the model provided by Sauer and Mergel [12] by applying the cohesive forces
directly at the axis instead of the lower strip surface. The contact forces hence do not cause any
bending moment, i.e. Mc = 0. The gap vector, gs, contains the X- and Y -displacements of the
beam axis, which correspond to the first two entries of d. Since TCZM acts in the direction −gs,
Eq. (4) incorporates both normal and tangential contact.
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We note that formulation (4) is unstable in compression [12]. As we further want to avoid
that the non-adhesive part of the strip is pressed into the substrate, we consider an additional
penalty force with penalty parameter ε for the entire beam,

T pen =

{
ε g2N ns, gN < 0,

0, gN ≥ 0
for S ∈ [0, L] , (5)

where
gN = gs · ns (6)

is the signed normal gap between the beam axis and the substrate surface. We thus have

T c = TCZM + T pen , Mc = 0 . (7)

2.4 Shape optimization

In [7] we have considered for the shape optimization of strongly adhesive and flexible strips

1. the maximization of the externally applied work, Πext,

2. the maximization of the total contact energy, Π∞c , and

3. the minimization of the peak internal energy during peeling, Πmax
int .

The first two criteria, however, have been recognized to be nearly equivalent [7]. We consider
for this reason the second and third criteria, and maximize in addition the maximum of the
peeling force,

Pmax = max
u
||P || . (8)

The peak internal energy and the total contact energy can be obtained by [7]

Πmax
int = max

u
Πint and Π∞c = w∞CZMAc, Ac =

∫
Lc

B dS , (9)

where w∞CZM is the contact energy per unit area, which is required for full separation. It can be
computed by integrating ||TCZM|| in Eq. (4) from ||gs|| = 0 to ||gs|| =∞, i.e. [12]

w∞CZM = T0 g0 exp(1) . (10)

Both Pmax and Πmax
int depend on the peeling angle, α, while Π∞c is a function only of the strip

width. We consider in the following two different objective functions to be minimized. To obtain
strong peeling resistance in direction of α, we consider an objective function very similar to the
one provided by Mergel et al. [7],

Ψ1(α) =
cp

Pmax(α)
+ Π

max
int (α) +

cc

Π
∞
c

. (11)

The overbar indicates that the corresponding variable is normalized with a chosen reference
variable, i.e. (•) = (•) / (•)ref. The minimization of Ψ1 results in a large maximum peeling
force and contact area but small deformation energy during peeling. The three criteria can be
weighted by varying the parameters cp and cc, where cp, cc ≥ 0 are chosen constants.4 For the
sake of simplicity, we use cp = cc = 1 here. A detailed investigation of cp and cc for vertical

4If c• = 0, the corresponding term is omitted; if c• → ∞, the term is weighted most strongly.
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peeling, considering the external energy instead of the maximum peeling force, can be found in
[7].

It is important for many applications that the peeling strip does not only adhere strongly for a
certain peeling direction but can also be removed easily in another direction. One well-known
example is the direction dependency of the gecko adhesion mechanism, see e.g. [2, 1]. We thus
consider a second objective function, which maximizes the peeling force for the angle αmax but
minimizes the force for a different angle, αmin,

Ψ2(αmax, αmin) =

[
cmax
p

Pmax(αmax)
+ cmin

p Pmax(αmin)

]
+
[
Π

max
int (αmax) + Π

max
int (αmin)

]
+
cc

Π
∞
c

, (12)

where cmax
p , cmin

p , cc ≥ 0. In conclusion, we formulate the following problem statement, consid-
ering the optimization constraints suggested by Mergel et al. [7]:

Problem statement

Find H(S), B(S), S ∈ [0, L], such that Ψ1 or Ψ2 is minimized subject to the constraints

1) V ≤ Vmax for the beam volume V =

∫
L
HB dS ,

2) H(S) ∈ [Hmin, Hmax] , B(S) ∈ [Bmin, Bmax] ,

3)
∣∣∂2H /∂S2

∣∣ ≤ H ′′max ,
∣∣∂2B /∂S2

∣∣ ≤ B′′max , and

4) the peeling process is quasi-static.

Constraints 1) – 3) are restrictions on the geometry of the peeling strip. According to 1), the
structure must not exceed a maximum permitted volume. We further prescribe intervals for
the admissible height and width, which is referred to as box constraint, and restrict the second
derivatives of H(S) and B(S).

3 Peeling study of differently shaped test geometries

This section discusses the direction-dependent peeling behavior of a set of differently shaped
test geometries. We consider linear functions for the height and width of the peeling strip in
order to study the optimization criteria of Eq. (11) and (12).

3.1 Strip geometry

We combine three functions Fincr, Fconst, and Fdecr to describe both the strip height or width,

Fincr(S) = cF + dF · (S − 0.5L) , (13)

Fconst(S) = cF , (14)

Fdecr(S) = cF − dF · (S − 0.5L) , (15)

F = H, B, and S ∈ [0, L]. We thus obtain nine different shapes, see Figure 2a. The curve
parameters, cH , cB, dH , and dB, are chosen such that all strips have an equal volume. We
consider 75% of the strip as adhesive, i.e. Lc = 0.75L. All geometry, material, and cohesion
parameters can be found in Table 5.
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We now investigate different peeling directions, α. An angle of α = 0◦ corresponds to peeling in
vertical direction. We note that linear functions for H and B have been considered in a previous
benchmark study for vertical peeling as well [7]. Nevertheless, the present work includes this
peeling case for the sake of completeness due to differences in the chosen geometry parameters,
the applied contact formulation, and the optimization criteria. For an angle of α = 90◦, the
strip is purely elongated by pulling its tip sideward. If α ≈ −90◦, the tip is also pulled sideward
but in the opposite direction. Depending on the relation between the beam stiffness and the
cohesion strength, the strip may be bent strongly during peeling. The case α = −90◦, for which
the beam would be compressed along its beam axis, is not considered here because we do not
investigate strip buckling in this study. To avoid buckling it is sufficient, however, to vary the
angle slightly by choosing e.g. α = −89◦.

0
0.5

1
1.5 −60

−30
0

30
60

0

2

4

6

8

 

α [deg]

constant height H
const

u / L

 

P
 /
 P

m
a
x

 r
e
f

B
incr

B
const

B
decr

0
0.5

1
1.5 −60

−30
0

30
60

0

2

4

6

8

 

α [deg]

constant width B
const

u / L

 

P
 /
 P

m
a
x

 r
e
f

H
incr

H
const

H
decr

0
0.5

1
1.5 −60

−30
0

30
60

0

2

4

6

8

 

α [deg]

varying height and width

u / L

 

P
 /
 P

m
a
x

 r
e
f

H
decr

 , B
incr

H
const

 , B
const

H
incr

 , B
decr

a. b.

c. d.

Figure 2: Test geometries with constant / linear height, H, and width, B: a. Illustration of the
shapes (exaggerated), the left boundary is peeled from the substrate; b. – d. Normalized peeling
force for different peeling angles, α; b. Variation of B (middle column of a.); c. Variation of H
(middle row of a.); d. Combination of increasing H (or B) and decreasing B (or H).

3.2 Peeling behavior

In the following, we examine the maximum force, Pmax, the maximum internal energy, Πmax
int , and

the total contact energy, Π∞c . Therefore we use the values obtained with shape (Hconst, Bconst)
for normalization, see Table 6 in the appendix. Figures 2b – 2d compare the force-displacement
relations of different test geometries for α ∈ [−60◦, 60◦]. Table 1 shows the maximum peeling
reaction forces for α ∈ [−89◦, 90◦].
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Pmax/P
ref
max −89◦ −60◦ −45◦ −30◦ 0◦ 30◦ 45◦ 60◦ 90◦

Hincr Bincr 1.24 1.12 1.13 1.20 1.57 2.73 4.27 7.91 23.54
Hconst Bincr 0.90 0.69 0.72 0.81 1.17 2.24 3.69 7.14 20.05
Hdecr Bincr 1.86 1.09 0.96 0.91 0.98 1.86 3.24 6.42 15.76

Hincr Bconst 0.80 0.73 0.75 0.80 1.07 1.89 2.98 5.60 16.47
Hconst Bconst 1.23 0.90 0.84 0.84 1.00 1.66 2.61 4.99 13.62
Hdecr Bconst 2.22 1.29 1.13 1.07 1.16 1.72 2.57 4.82 15.02

Hincr Bdecr 1.05 0.91 0.91 0.95 1.23 2.16 3.42 6.31 15.43
Hconst Bdecr 1.56 1.11 1.03 1.02 1.21 1.98 3.12 6.02 16.64
Hdecr Bdecr 2.40 1.42 1.25 1.19 1.30 1.97 2.97 5.70 17.76

Table 1: Normalized maximum peeling force for the considered test geometries varying the
peeling angle, α; the smallest and largest value are marked in bold.

Πc/Π
ref
c Πmax

int /Π
ref
int

−45◦ −30◦ 0◦ 30◦ 45◦

Hincr Bincr 1.13 2.91 2.53 1.92 1.63 2.00
Hconst Bincr 1.13 2.18 1.89 1.40 1.08 1.22
Hdecr Bincr 1.13 1.47 1.32 1.03 0.74 0.76

Hincr Bconst 1.00 2.25 1.95 1.45 1.07 1.06
Hconst Bconst 1.00 1.57 1.37 1.00 0.71 0.69
Hdecr Bconst 1.00 1.08 1.00 0.84 0.66 0.58

Hincr Bdecr 0.88 1.57 1.38 1.04 0.73 0.65
Hconst Bdecr 0.88 1.20 1.10 0.90 0.69 0.59
Hdecr Bdecr 0.88 0.93 0.88 0.79 0.67 0.61

Table 2: Maximum internal energy for different peeling angles, α, and total contact energy,
considering the nine test geometries; the optimum values are marked in bold.

Initially, the reaction force builds up rapidly for all considered shapes, see Figures 2b – 2d.
During this phase the entire adhesive part still remains attached to the substrate. The actual
beginning of the peeling can be observed as a kink in the force-displacement curves of Figure 2.
We denote the corresponding force required to start the peeling process build-up force here. This
force becomes larger if α increases from 0◦ to 90◦, regardless of the strip geometry. If the angle
is negative, the build-up force first decreases but becomes larger again if α approximates −90◦,
see also Table 1. This phenomenon is probably caused by the finite bending resistance of the
considered peeling strip, which becomes most apparent for α� 0◦.

After reaching the build-up force, the slope of the reaction force, ∂P/∂u, is larger for ∂B/∂S > 0
than for ∂B/∂S = 0, and smaller for ∂B/∂S < 0, see Figure 2b. This agrees well with
observations made by Pantano et al. [8] and Mergel et al. [7]. Figure 2c shows that, for the
parameters considered here, the same effect occurs for ∂H/∂S > 0 and ∂H/∂S < 0. We observe
that the higher the angle, α, the stronger is the influence of the slopes of H and B on the force.

Figure 3 compares exemplarily all strip shapes for two different angles, α = 0◦ (solid line) and
α = −45◦ (dashed line). It is seen from Figure 3 and from Figure 2d that the curve of the
peeling force strongly depends on the relation between H and B and on the peeling direction.
We can thus not assume that the build-up force is the maximum force if the structure is shaped
arbitrarily. We further observe that for the strips with constant width (black line), the maximum
force is larger for the decreasing height Hdecr (Figure 3b) than for both Hincr (Figure 3a) and
Hconst (Figure 3c). This phenomenon has been reported by Pantano et al. [8] but has not been
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Figure 3: Comparison of the force-displacement relations for the peeling angles α = 0◦ (solid
line) and α = −45◦ (dashed line): a. Test geometries with increasing height (left column of
Fig. 2a); b. Test geometries with decreasing height (right column of Fig. 2a); c. Test geometries
with constant height (middle column of Fig. 2a).

observed by Mergel et al. [7] for the geometry and material parameters considered in [7]. This
is discussed further in Section 3.4.

As Table 2 shows, the contact energy is largest for geometries with increasing width, B = Bincr.
The deformation minimizes for strips that become thinner towards their tip, H = Hdecr. This
agrees with the results for α = 0◦, considering van der Waals adhesion [7]. Figure 4 shows
the objective function, Ψ1, evaluated for the nine geometries and for different peeling angles.
The location of the minimum of Ψ1 is circled. Towards α ∈ {−45◦,−30◦, 0◦}, the geometries
(Hdecr, Bdecr) and (Hdecr, Bconst) are rated best, probably due to their small deformation energy,
Πmax

int , but large maximum force, Pmax. For α = {30◦, 45◦} and the parameters considered here,
(Hdecr, Bincr) and (Hincr, Bconst) have the smallest costs, Ψ1. Figure 5 shows Ψ2 for two different
combinations of peeling directions, (45◦,−45◦) and (30◦,−30◦). We observe that for these cases,
the cost, Ψ2 is minimal for shape (Hdecr, Bconst).

In fact, the detachment behavior of thin strips is affected by several other parameters beside
their thickness or width, which are not investigated in this study. It has been shown, for
instance, that the peeling force depends on both the ratio Lc/L [7] and the relation between the
material stiffness and the adhesion strength [10]. It is further assumed that the strip length, L,
compared to the range of adhesion may have influence [7].
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3.3 Comparison with the Kendall model

A common approach for investigating directional peeling of thin strips is to consider the an-
alytical peeling model of Kendall [6]. This model considers the deformation of a strip with a
constant height and width due to pure elongation. We compare the peeling behavior of the
test geometry (Hconst, Bconst) with the Kendall model, keeping in mind that the applied com-
putational beam model also accounts for the bending resistance and the shear flexibility of the
beam. Those are both neglected in the Kendall model. The required force for a certain peeling
direction can be computed for the Kendall model by

PK

EBH
=

√[
1− cos θ

]2
+ 2

w∞CZM

EH
−
[
1− cos θ

]
, θ = 90◦ − α , (16)

see e.g. [10].

Figure 6a shows the relative error between the Kendall force and the maximum peeling force
from the beam model. The deformation of the beam axis shortly before detachment and the
deformation of a Kendall strip are shown for various peeling angles in Figure 6b. As one can see
in the figures, the results agree well only for α = 90◦ (θ = 0◦), where the error is less than 0.01%.
This coincides with the assumption that the strip deforms due to pure elongation in this case.
The smaller the peeling angle, however, the larger is the relative error between both solutions,
over 20% for vertical peeling, and nearly 70% for α = −89◦. The remarkable differences are to
be expected due to the strong bending deformation of the peeling strip, see Figure 6b, which
has been reported by Sauer [10], considering vertical peeling. This phenomenon cannot be
accounted for with the peeling model of Kendall. Furthermore, it is seen in Figures 2 and 3
that the assumption of a constant reaction force during peeling is valid for bending-resistant
strips only if

1. they have a constant height and width and

2. they are deformed by pure elongation, i.e. α = 90◦.
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shortly before full detachment.
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3.4 Modified strip height

Motivated by the results discussed in Section 3.2, we now investigate how a slightly modified
strip height influences the peeling behavior. We consider for this purpose a peeling strip with
constant width, Bconst, peeled vertically from the substrate, i.e. α = 0◦. As Figure 7a shows,
its non-adhesive part has a constant thickness, Hconst, while the height increases / decreases
linearly at the adhesive part, S ∈ [L−Lc, L]. We denote the thickness of the right tip as Htip

here. The other parameters correspond to those used in Section 3.2, see Table 5. Figure 7b
shows the force-displacement relation for different tip heights. The black curve belongs to
geometry (Hconst, Bconst). The maximum peeling force in dependence of the ratio Htip /Hconst

is shown in Figure 7c. On can see from Figures 7b and 7c that the relation between the
maximum force and the slope ∂H/∂S is strongly non-linear. For the parameters considered
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Figure 7: Peeling behavior of a strip with constant width, Bconst, and varying tip height, Htip:
a. Normalized strip height; b. Force-displacement relation for α = 0◦; c. Normalized maximum
peeling force for α = 0◦, the maximum values shown in b. are marked with a circle.

here, Pmax reaches its minimum for the tip height Hmin
tip ≈ 0.583Hconst, where the peeling

force remains nearly constant after building up. If Htip < Hmin
tip , Pmax increases linearly with

decreasing tip height. We can conclude from the comparison of Htip = 0.25Hconst (green blue
solid line), 1Hconst (black line), and 1.75Hconst (orange solid line) that the maximum force can
be increased not only by an increasing but also by a decreasing strip height, which may explain
the differences in the observations of Pantano et al. [8] and Mergel et al. [7].
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4 Computational shape optimization of peeling strips

After investigating the directional peeling of prescribed test shapes in Section 3, we now consider
computational shape optimization based on the algorithm of Mergel et al. [7]. We note that,
in general, it cannot be guaranteed to find the absolute minimum for non-convex optimization
problems. We refer to [7] for a detailed discussion of the applied algorithm.

4.1 Single peeling direction

First, we maximize the peeling force along a certain peeling direction, i.e. we minimize Ψ1(α)
in Eq. (11) for different angles, α ∈ [−45◦, 45◦]. The parameters considered here are given in
Table 7. Figure 8 shows the optimum shape of the peeling strips that we obtain with shape
optimization for different directions. For −45◦ and −30◦, the peeling strip is very thick at
the non-adhesive part, but flattens at the adhesive part. We observe from Table 3 that both
geometries attained the maximum permitted volume.

a. b.

c.

d. e.

Figure 8: Optimum shapes obtained with computational shape optimization for Ψ1 (single
peeling direction), considering α ∈ [−45◦, 45◦], and cp = 1, cc = 1.

The peeling strip that we obtain for vertical peeling, α = 0◦, resembles most closely the test
geometry (Hdecr, Bconst), which is rated similarly to (Hdecr, Bdecr), see Figure 4c. For 30◦ and
45◦, the strip tends to attain a small height but the maximum permitted width at the non-
adhesive part. Table 3 shows the peeling force, the peak internal energy, and the contact energy
for all geometries obtained here. Compared to all test geometries discussed in Section 3, the
shapes obtained with the optimization procedure have a larger contact area and maximum
force with acceptable maximum deformation, see Tables 1, 2, and 3. The total cost, Ψ1, is thus
significantly smaller than for each of the best-rated test shapes, see Table 3 and Figure 4.
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α Ψ1 Pmax/P
ref
max Πmax

int /Π
ref
int Π∞c /Π

ref
c V/Vmax

−45◦ 2.05 2.42 0.86 1.29 1.00
−30◦ 2.02 2.26 0.89 1.44 1.00
0◦ 1.73 2.11 0.83 2.35 0.88
30◦ 1.41 3.48 0.65 2.13 0.80
45◦ 1.38 5.68 0.64 1.78 0.69

Table 3: Normalized maximum peeling force, maximum internal energy, and total contact energy
of the best-rated geometries obtained with computational shape optimization for the objective
function Ψ1 and α ∈ [−45◦, 45◦].

4.2 Combined peeling directions

We finally minimize Ψ2(αmax, αmin) in Eq. (12) in order to obtain strongly adhesive peeling
strips that can be detached easily for a certain peeling direction. The results are compared to
those geometries obtained for a single direction, Ψ1(α), see Section 4.1, where α = αmax. Since
we want to investigate how the additional requirement of easy detachment influences the strip
shape, we also minimize the peeling force towards a single direction by considering

Ψ∗1(α) = cp Pmax(α) + Π
max
int (α) +

cc

Π
∞
c

, (17)

where α = αmin. Figure 9 shows optimum geometries obtained for the three objective functions
Ψ1, Ψ2, and Ψ∗1 and the peeling directions {αmax, αmin} = {45◦,−45◦} and {30◦,−30◦}. We
use the weightings cmax

p , cmin
p ∈ {1, 5} and cp = cc = 1 here. The other parameters correspond

to those of Section 4.1, see Table 7. The solid / dashed arrows in the figure indicate that Pmax

is maximized / minimized towards this direction. Table 4 shows the maximum peeling forces of
the geometries of Figure 9 for both directions, αmax and αmin. Depending on how strongly the
requirement of easy detachment towards αmin is weighted in Ψ2 and Ψ∗1 the geometry tends to
be very slender at its adhesive part. For the five cases considered here, the forces towards αmax

and αmin become smallest for Ψ2 with cmax
p = 1, cmin

p = 5, where the strip attains nearly the
minimum permitted width along L. We note that we do not prescribe a minimum for the strip
volume here. Differences between this shape and the geometry obtained for Ψ∗1 are reasonable
because the weightings of the requirements concerning easy detachment, small deformation, and
large contact energy are different. For cmax

p = 5, cmin
p = 1, the structure resembles slightly the

shape obtained for Ψ1. In general, we observe a strong dependence of the shapes on the applied
weightings.

As Table 4 shows, the ratio of Pmax(αmax) /Pmax(αmin) is larger for larger differences in the
peeling angles, |αmax − αmin|. In contrast to the geometries for the single peeling directions, Ψ1

and Ψ∗1, the strips obtained considering multiple directions incorporate both strong attachment
towards αmax but easy detachment towards αmin, see Table 4.

5 Conclusion

This paper investigates optimal shapes of thin and flexible peeling strips for different peeling
directions. We consider the maximum force, the strain energy due to elastic deformation, and
the overall peeling energy as optimization criteria here. The peeling strip is modeled by using a
finite beam element formulation of Sauer and Mergel [12], which is based on the geometrically
exact beam theory of Reissner [9]. An exponential cohesive zone model of Xu and Needleman [17]
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Ψ1
Ψ1

Ψ2
Ψ2

Ψ2
Ψ2

Ψ2
Ψ2

Ψ∗1 Ψ∗1

a. b.

Figure 9: Geometries obtained with computational shape optimization for Ψ2(αmax, αmin)
(multiple peeling directions) compared to results for Ψ1(αmax) and Ψ∗1(αmin), considering
cmax
p , cmin

p ∈ {1, 5} and cp = cc = 1: a. Peeling direction {αmax, αmin} = {45◦,−45◦};
b. {αmax, αmin} = {30◦,−30◦}. The solid / dashed arrows indicate that Pmax is maximized
/ minimized towards this direction.

is considered to model the normal and tangential forces that act on the strip during the peeling
process.

Two different cases are studied here:

1. Shape optimization for a single peeling angle, and

2. optimization by combining two different angles in order to obtain strong adhesion but
easy detachment for different peeling directions.

Both are examined by accounting for a prescribed set of test geometries and by performing
computational shape optimization. We use the optimization algorithm proposed by Mergel et
al. [7] who consider the optimal shape of adhesive microstructures for peeling normal to the
substrate.

14



{αmax, αmin} Considered objective function Pmax(αmax) Pmax(αmin) V/Vmax

Ψ1 (cp = 1) 5.68 (1.02) 0.69
Ψ2

(
cmax
p = 5, cmin

p = 1
)

4.11 0.63 0.48

{45◦,−45◦} Ψ2

(
cmax
p = 1, cmin

p = 1
)

2.78 0.45 0.37

Ψ2

(
cmax
p = 1, cmin

p = 5
)

1.91 0.31 0.25

Ψ∗1 (cp = 1) (2.68) 0.48 0.44

Ψ1 (cp = 1) 3.48 (1.15) 0.80
Ψ2

(
cmax
p = 5, cmin

p = 1
)

2.88 0.97 0.53

{30◦,−30◦} Ψ2

(
cmax
p = 1, cmin

p = 1
)

1.82 0.65 0.34

Ψ2

(
cmax
p = 1, cmin

p = 5
)

1.08 0.34 0.24

Ψ∗1 (cp = 1) (1.68) 0.58 0.34

Table 4: Maximum peeling forces towards αmax and αmin, considering the optimum geometries
for Ψ1(αmax), Ψ2(αmax, αmin), Ψ∗1(αmin) with cc = 1, see Fig. 9.

We observe that the force required to initialize strip peeling depends strongly on the chosen
peeling direction. The maximum can be observed for peeling parallel to the substrate, for which
the strip is purely elongated. The peeling behavior in the opposite direction depends on the
bending resistance of the considered strip. We recognize that both the strip height and width
influence strongly the following peeling behavior of the strip. This influence can be increased
by varying the peeling angle. One can thus not assume a priori that the maximum force occurs
at the initialization of the peeling process. The geometries that we obtain with computational
shape optimization for multiple peeling directions differ in both the shape and the peeling
behavior from those considering a single peeling direction. Depending on the weighting of the
considered criteria, these peeling strips are less adhesive but can be detached more easily for a
prescribed direction. In conclusion, the optimum shape of the thin strip may depend on many
other parameters, such as the length of its adhesive part or its total length compared to the
range of adhesion [7]. A study varying all weighting, geometry, and adhesion parameters would
thus be of further interest.

A Parameters

This section provides the parameters used for the results in Sections 3 and 4. All parameters
are normalized with Young’s modulus, E, and a unit length, L0.

geometry L = 200L0, cB = 40L0, dB = 0.2, cH = 12L0 + ∆cH , dH = 0.06,

choose ∆cH s.t. V = 9.6 · 104 L3
0

material E, ν = 0.2, G = E / [2(1 + ν)]

cohesion T0 = 0.3088E, g0 = 0.0913L0, ε = 50E /L2
0, Lc = 0.75L

Table 5: Parameters for the test geometries investigated in Section 3.

P ref
max

[
E L2

0

]
Πref

int

[
E L3

0

]
Πref

c

[
E L3

0

]
3.99 76.91 459.90

Table 6: Normalization quantities obtained with geometry (Hconst, Bconst): Maximum peeling
force, peak internal energy, and total contact energy.
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geometry L = 200L0, Vmax = 1.5 · 105 L3
0, H ′′max = 0.05 /L0, B′′max = 0.35 /L0

Hmin = 5L0, Hmax = 25L0, Bmin = 15L0, Bmax = 120L0

material E, ν = 0.2, G = E / [2(1 + ν)]

cohesion T0 = 0.3088E, g0 = 0.0913L0, ε = 50E /L2
0, Lc = 0.75L

optimization Ntotal = 80, Nchild = 18, Nnew = 24, Nmutate = 4,

nopel = 20, µabs = 0.05, µrel = 0.25, µ = 0.01, see [7]

Table 7: Parameters for the shape optimization discussed in Section 4.
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