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Abstract: Simulation of dynamic adhesive peeling problems at smalkschas attracted little attention
so far. These problems are characterized by a highly nanlinresponse. Accurate and stable time
integration schemes are required for simulation of dyngmeieling problems. In the present work, a
composite time integration scheme is proposed for the sitionl of dynamic adhesive peeling problems.
It is shown through numerical examples that the proposedrselremains stable and also has some
gain in accuracy. The performance of the scheme is compaitbédtwo collocation-based schemes,
i.e. Newmark scheme and Bathe composite scheme. It is shwtnhie proposed scheme and Bathe
composite scheme perform equally. However, the propodeshse adds very little to the computational
cost of Newmark scheme. Through a numerical simulatione@p#eling of a gecko spatula from a rigid
substrate it is shown that the proposed scheme and the Bathgosite scheme are able to simulate the
complete peeling process for given time step whereas thendekvscheme diverges. It is also shown
that the maximum pull-off force is within the range reportedhe literature.

Keywords: Time integration; collocation-based schemes; composlhierae; contact mechanics; peel-
ing; gecko adhesion.

1 Introduction

The focus of the current work is on modeling and simulatiomp@éling problems that occur at small
length scales by taking into account dynamic effects. Dyingmeeling simulation problems at such
small scales belong to the class of contact problems wheredhtact forces can be derived from a
potential formulation like those based on Van der WaalsdercAn example is the adhesion and peel-
ing of a gecko spatul@lé}_c_zbw)]. These problems at@yhigpnlinear in nature. Simulation of
these problem requires accurate time integration schefoethe best of authors knowledge, very little
literature exists on dynamic simulation of peeling proldesth small scales, see e.@ 010)].

A number of time integration schemes exist in the literaturéch can be classified into two different
categories:collocation-based schemesid energy-momentum conserving scheM @)]. In
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collocation-based schemes, the equation of motion isfiegtiat selected points in the time interval.
In contrast, for energy-momentum-conserving schemesedhation of motion is explicitly integrated
over the time interval. The Newmark scherne [Newmark (1958biich is a parameter-based colloca-
tion based scheme, may induce significant errors in the rioalesolution which then leads to diver-
gence of the numerical solution in case of nonlinear probleRecently, a parameter-free collocation-
based composite time integration scheme has been propyg<edtive and co-workerhO?);
Bathe and Balg| (2005)] with the objective to conserve energya later work, see [Bathe and Noh
@)], it is shown that the scheme dissipates energy fmiaps higher modes. Alternativelgnergy-
momentum conserving scherhase been developed with the idea of conserving propertithe ainder-
lying problem i.e., momentum and energy. Energy-momentanserving schemes were first applied to
elastodynamics H;LSimD_andladeML(ﬂ%Z). They presentesvamrethodology for the construction of
time integration algorithms, called energy-momentum eorieg algorithms (EMCA), that inherit, by
design, the conservation laws of momentum and energy.,[Be¢sch and Steinmann (2001) used a non-
standard quadrature formula, based on the discrete gtadethod of Gonzaléz ( 19|96), for studying the
energy conservation in nonlinear elastodynamics. Regetisch and Betsch_LHﬂsgh_a.nd_B_elt 2009,
)] have developed a new energy-momentum conservirenseby extending the discrete gradient

method om::_(_lﬂl%) and the one-step method of BetstS#einmarn (2001) for contact-impact

problems using the mortar finite element method.

Recently,LG_auIam_a.nd_S_a]ubr_(ZbB) have proposed an energemum conserving time integration
scheme for dynamic adhesive contact problems based on tieemioof the discrete gradient. This
scheme leads to major accuracy gains in conserving the sy the collocation based schemes.
However, the methods based on discrete gradient approdign fom some drawbacks. First, the
evaluation of the discrete gradient, specially for the pudlquires large computational time. Also,
the discrete gradient is specific to the material propettiesugh strain energy density function. This
restricts the application of a scheme based on discretéegitatt different materials. Hence, applica-
tion of methods based on the discrete gradient approach sfiynestricted to small scale problems.
Instead, various collocation-based schemes like Newmﬁnkmel@%] and Bathe’s com-
posite scheme [Bathe (2007); Bathe and Baig (2005)] ateptilied which ensure reasonable accuracy
without severely affecting the computational time. Theeahiye of the present work is to propose a
composite time integration scheme, which does not suffan fthe drawbacks mentioned previously
i.e., it can be applied to general materials and should fiettethe computational time without affecting
the accuracy. Hence, in the present work, a composite titagriation scheme is proposed for dynamic
adhesive contact problems which incorporates the inteadgttives. The performance and accuracy of
the proposed scheme is compared with two class of collothigsed schemes i.e. the parameter-based
Newmark scheméM 59)] and the parameter-freeeBatomposite schem Iﬁbm);
Bathe and Balg (2005)] through two simple numerical exas\pke, interaction of a deformable ball
with a rigid surface and peeling of a deformable strip fromigidrsubstrate. It is shown that there is
gain in accuracy compared to collocation-based schemesalsmthe computational cost in only slightly
higher compared to Newmark scheme. Finally, the peelinggd#cko spatula pad from a rigid surface
is simulated using the proposed scheme and its performasmbgated in comparison with collocation-
based schemes. In particular, the computational time redjior each scheme is also evaluated.

The remainder of this paper is structured as follows: Se@i@rovides an overview of the adhesion
model used to describe adhesive contact between deforrballies and also presents the finite el-
ement formulation. Sectidn 3 first presents a brief discmssin the implementation of the colloca-
tion based schemes proposed by NewnMn@l%gﬁaﬂde and coworker@h@(bm);
Bathe and Balg (2005)]. Then, the proposed composite titegiiation scheme is presented. In Sec-
tion[4, results of two numerical examples: dynamic intecacof a deformable ball with a rigid surface
and peeling of a deformable strip from a rigid substrate aesgnted. Numerical results of dynamic
peeling of a gecko spatula from rigid surface are presemtéioei end. Section 5 concludes this paper.




2 Formulation

In this section, we first present the adhesion formulatiopleyed in the present work followed by the
finite element formulation.

2.1 Adhesion formulation

Here, a brief overview of the adhesion formulation consden the present work is presented which
is suitable to describe a large class of interaction meshasiiike classical contact with penalty and
barrier formulations, physical interaction formulatidike cohesive zone models as well as electrostatic,
gravitation, and Van der Waals interactions, ie_e_[_Sa.ugLamhz& l(ZQl|3)]. According to the model,
the interaction between two deformable bodigs(k = 1, 2) is described by the contact interaction
energy

rlcz/ B3 O, day | (1)
0By

where[3} is the current surface density xat € 0B, defined as the number of interacting particles per
current surface area, ady denotes the interaction potential between a partickg and the neighboring
body B, (¢ # k). The potentialb, depends on the signed distargdetween poink, and surface B,
i.e.,

rs(%) = (Xc—%p) - Np, (2)
wherex;, is the closest projection point @ ond3, andn, is the corresponding surface normal. Alter-
natively, Eq.[(1) is expressed in the reference configuna®

ncz/a%ksakmAk, 3)

whereBy (k = 1, 2) denotes the reference configuration of the blodyd (3}, is the reference surface
density, expressed as the number of interacting parti@desgberence surface area. Here, we consider
the number of surface particles to be conserved during aheftion such that

7 day. = B5 dA = const @)

This assumption is reasonable for solids. The variatioflg@fdue to variations of configuratioxy,
denotedxy = 0¢,, now becomes

aCDg aCDg
311 :/ s 25 :/ s 90 50, da . 5
c.k a%kBOK X b\ dAk akaBk X ¢\ dayk )
In this equation, we can identify the interaction force
0P,
k % (6)
The surface traction, in the current or reference configamats then identified as
tk:BﬁFk, or Tk:B(S)ka. @)
For suitable definitions ab,, one can consider various contact formulations [Sauer ameirzis|(2013)].

In the present work, we focus on van der Waals adhesion forlwihie have

. (0N 1 lo 8 1/ro 2
360<r5> —6<rs b >0 ®
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Here,® andrg are model constants adg = dayx/dAx = B5, /Bi characterizes the surface deformation.
The corresponding traction, using Eqs. (6) ddd (7), is giwen

_T() 1 /rg o 1/ro 8
=75 [45<r5> _3<rs> - ©

Here, Ty, which describes the adhesive strength, is proportiondlaimaker’s constarfy [Mi
(1997)].

Remark

1. In the present work, only frictionless normal contactaesidered.
2. If one of the bodies is rigid for e.qg., # is rigid, thenJg, = 1.

3. It should be noted that although the contact potential[@tand traction (Eq.]9) are smooth func-
tions of distance and time, spatial, and temporal dis@titia can lead to nonsmooth functions.
This will require spatial and temporal adaptivity to appnoate smooth behavior.

2.2 Finite element formulation

The expression of the finite element equations associatédtié contact traction given bl](9) is now
simple to derive. For a general, three-dimensional finiéeneint discretization of bodieB, (k = 1, 2),
the expression for the equation of motion for dynamic pnwbig given by

Mu+fint+fc—fextzo> (10)

whereu is the displacement vectau,is the velocity vectoril is the acceleration vector amd denotes
the consistent mass matrix. The vecthss fc, andfey denote the internal, contact, and external forces
of the discretized system. In expressibnl (10) superimpdsesidenote derivative with respect to time.
The expression foM, fiy, andfe can be found in standard texts, see m 2008)k Th
expression for the contact forégis obtained from the element contributiof§s (e = 1,...,nses Where

Nsel is the total number of surface elements influenced by adhesite expression fdf, acting on the
nse surface nodes of the current surface elenfignir the reference surface eleméigf is given by

& = —/ N¢ tiday = —/ NE TdA , (11)
¥ Mo

whereNg is given as

Ne = [Nil, Nal,...,Nol] , (12)
which is a hgim % (Ngim + Nse)] dimensional matrix formed by these surface shape function; (I =
1,2,...,ns) Of the surface element. Hemgn, < 3 is the dimension of the Euclidean space occupied by
the reference configuration ahds an identity matrix of siz@gim x nNgim. IN general, botli,; andf. may
depend on the displacement and velocity, fig. = fint (U, U), andfc = fc (u,u). However, in the current
work, we always considdt = f¢(u). Also, it is assumed that the internal force vedtgr= fin: (u,u)
can be additively split into an elastic part and a viscous that is linear inu i.e.,

fint(uau) = fel(u) + Cu ) (13)

whereC is the damping matrix. We consider Rayleigh damping in whieh damping matrix can be
written as
C =M + azxKelo, (14)

whereKg o denotes the constant stiffness matrixtat= 0. In Eq. [I3),a1, anda, are mass and
stiffness proportional damping constants respectivebnde, the equation of motion given by Hqg.](10)
is obtained as

MU+ CU + fg +fec —fext = 0. (15)



3 Time Integration Schemes

The numerical solution of Eq_(15) requires integration imet for which suitable time integration

schemes are required. In the present section, we first grasercollocation-based time integration
schemes. The first scheme is the Newmark schéme_LN_es}vﬂm.Lﬁ)(ll%ich is a parameter-based
scheme. The second scheme is the composite scheme proyd3athb and coworkeri’@O?);
Bathe and Balgl (2005); Bathe and Noh (2012)] which belongthéoparameter-free family schemes.

Then, we present the details of the composite time integrattheme proposed in this work.

3.1 Parameter-based time integration scheme: Newmark schee [Newmark (1959)]

The standard Newmark equations are given as

o A2
U™l = UM AU+ - [(1 —2B)u" + 2[3Un+l] ) (16)

umt = WA [(L-y)ut +ya™t (17)

whereAt is the time step anf andy are the Newmark parameters. The acceleraiibrt is obtained
by substituting fou™* andu" in Eq. [0). In the present work, even though we consider &mear
system, the values of the paramet@msndy are chosen as/4 and /2 which correspond to an uncon-
ditionally stable scheme for the linear system with expligprescribed external loads. Substitution for
U™ from Eq. [I8) in Eq.[(ID) leads to the force residual

frost = ot + fott — ot + woM (u™* —u") — wiMU" — WM " = 0. (18)
Here, the constantsy-w, are given by

1 1 1
:W7 Wl:@’ W2:——1. (19)

2B
The residual given by Eq_(]L8) has to be solved using an iferatheme to obtain the solution. In the
present work, Newton-Rapshon (NR) scheme is chosen folhwdtiresponding tangent matrix is given

by

Wo

1
K+l afPeJrSl = afgr 6fg+l — afg;tl + wWoM . (20)
aun+1 aun-!,-]_ aun-',-l aun+1

The tangent matrix associated with the contact contribufio! is given by

ofnt1 0Ty
n+1 .__ C _ T
Kot = ST /rgk NS v NedAy . (21)

We refer td_S_au&LandJALLiggbv{s_(ZbOQ) for detailed derimatiand discussion. Once convergence is
reached, velocity™1, and acceleratioii"** are computed using Eq§.{16) andl(17).

RemarksTakingy > 1/2 andf > y/2 in the Newmark scheme introduces so-cali&ggbrithmic damp-
ing. However, this also damps out the physically relevant lowedes and reduces the accuracy to first
order. Temporal integration schemes have been develoghdawbntrollable numerical dissipation for

higher modes (see e.d., [Chung and Hulbert (1993); Krenkdousberg|(2005)]). A detailed analysis

of energy conservation and dissipation in linear Newmgpgetalgorithms and ther modifications is

discussed il@b&.




3.2 Parameter-free time integration scheme: Bathe compdsi scheme [[Bathe[(2007);

Bathe and Baig (2005)]
This scheme has been proposed by Bathe and coworkers [R240€)( Bathe and Baig (2005)]. The

scheme combines two distinct schemes to yieltbmposite schemfer the numerical integration of
nonlinear dynamical system of equations. The approachindéé scheme is to calculate the unknown
displacements, velocities, and accelerations by conegiéne time stept to consist of two equal sub-
steps of sizé\t/2. For the first sub-step solution, the trapezoidal rule edusnd for the second sub-
step solution, the 3-point backward Euler formula is usedthé first sub-step, the nonlinear dynamic
equation (Ed]]ﬁ)is written at timet,, 1> = t,+At/2. The equations of the trapezoidal rule are given
as

At /. .
Utz = " (u” - u”+%> , (22)
. . At /. ..
A ST LI 2 (u” + u”+%> . (23)

Combining Egs.(I0) &k, 12 = th+At/2, (22) and[(2B) leads to the force residuatat , which is
given by
n+31 fn+% n+i o nt+l

res. = Tg ° + fo 2 — fext +W4Mun+% -M (W4Un + 2wsl" + Un) =0, (24)

where the constantsz andw, are given by

4 4\?
W3:Kt’ W4:<A_t> . (25)

The tangent matrix associated with the contact contribu‘ﬁ?i% required for NR iterations follows sim-
ilar procedure as in Newmark scheme, r and WIi@@98)for details. Once NR convergence
is reached, velocity™ 2, and acceleratioi"™ 2 are computed using Eq§._{22) afd](23). In the second
sub-step, the nonlinear dynamic equation (Edj. 10) is wridtetimet,, 1 = t, +At. The equations of the
three-point Euler backward method are given as

. 1

umt = weu" — wau" 2 + weu™t? | (26)

. . . 1 .

Ut = wel" — wal"™ 2 + weu™t? | (27)
where the constantss andwg are given as

1 we — 2
At’ °T At
Combining Egqs.[(I0) at,,1 = tn+At, (26) and[(2V) leads to the force residualat which is given by

W5 = (28)

1 . 1
fogh = 0 4 et wyMu™t - M (W0W3u”+2 + wsu" — wou"Z +

qun) = 0, (29)
where the constants; andwg are given as
3)\? 3
W7 = (Kt) ; Wg = A2 (30)

The tangent matrix associated with the contact contribstify* follows similar procedure as in New-
mark scheme, séE_Sau&LandMidgbLs_dZOOQ) for detailsr édtavergence is reached velocity™?,
and acceleratiofi" are computed using Eq§.{26) abd](27).

3In case of damping, we use EE.115) instead of EG. (10).



Remarks This scheme, unlike Newmark scheme, has no parameter tisehur adjust. The method

is shown to be second order accurate and remains stablederdaformation and long time response.
Also, it has been shown recently, sM@OB)NSﬂpﬁte spurious higher modes which arise
because of the spatial discretization. A time step valuevibal certain threshold leads to no dissipation.

3.3 Proposal of a new composite time integration scheme

Next, we present a new composite time integration scheme sy$tem of second-order ordinary differ-
ential equations given by Eq.(15) are integrated over the thtervalT € [ty, t,,1] to give the residual
momentum vector at timg, 1 as

thi1
prt (xn+1) =M (un+1 —U") 4+ C(Uns1 — Un) +/t ' (for +fo —fex) dt = 0. (31)

The time integral corresponding to contact force vector gn @1) can be computed using standard
Gaussian quadrature in time or by employing a nonstandaadrgture rule like the discrete gradient
method, see for e.@_Qaulam_a.nd_SlabngZOB). However, a®omehin sectiof]l, schemes based on
discrete gradient approach are restricted in applicategabse: (a) they are specific to material prop-
erties through strain energy density function, and (b) themutation of the discrete gradient itself,
specially for the bulk, may become computational expendinghe present work, we propose to inte-
grate the integrals in E4.(B1) separately. First, we preposntegrate the internal force vector using the
trapezoidal rule. Second, we observe that due to the higijimear nature of the interaction potential,
see Eq[(B), an accurate computation of time integral cporeding to contact force in Eq._(B81) is im-
portant. Hence, it is integrated using Gaussian quadratithelarge number of Gauss points. Also, the
Newmark scheme is combined with EQ.J(31). This leads to a rewposite time integration scheme.
Substituting foru"* using Eqgs.[(16) and (17) in EG(31), we obtain

Pres. (X™1) = woM (U™ — u") — wyoM U™ + WisMG" + C (Uny1 — Un)

the

+ A (fel +fc— fext) da =0, (32)
where the constantsg, wig, andwsi; are given by
_ Y _ Y _ _Y
Wo = oAt Wi = R wi = At (1 ZB> : (33)

Now, as proposed, the integral corresponding to the intéonee is replaced using the trapezoidal rule.
Hence,

tni1 At
[ adk = S (15 1) (34)
Finally, the tangent matrix needed for NR iterations is oilsd as
opt At [ ofht 0 tn1
LN+l ﬁ =wgM 4+ C + > <6X?‘|+1 + X1l [/tn (fc — fext) dt} . (35)

Here, the integral for the internal forces is replaced by Bd). In the present work, the number of
Gauss points for integration in time for the contact forcd arternal force components in EG.{31) is
taken to be 5.



4 Numerical Examples

In the present section, first, the performance of the timegiation schemes outlined in sectidn 3 is
discussed using two simple problems i.e., interaction otforthable ball with a rigid surface and
peeling of a deformable strip from a rigid substrate. Thea,gerformance of the schemes is discussed
through dynamic peeling simulation a gecko spatula frongal rsubstrate. In the present work, the
material is modeled as an isotropic, nonlinear elastic Neoke material with Young’s modulus and

the Poisson’s rati® are taken as 2 GPa and®Qespectively. The density is taken as 1000 K&y/ifhe

Neo-Hookean material model given by Zienkiewicz and Ta{2805)

U

_ A 2
W = > (trB—3) — pIinJ + 3 (InJ) (36)

has been considered. HeBeis the left Cauchy-Green tensor ahd= v/deB. In the above expression,
pandA are the Lamé constants.

In the present work, a normalized form of Eq. (7) is used. Fonmalization of Eq.[{7), we first define

— Tk _ Lo
k EO ) S rs ) ( )

whereEy and Lg are the characteristic energy density (or stiffness) andtlescale of the problem
respectively. The normalized equation corresponding to{B)qjs written using the normalization pro-

cedure discussed in Sauer and Wriggers (2009), which leads t

rS rS

where the constantg andc, are given as

Tt Tt

S 2

The parameteng = Lo/ro andyw = Eq/Wo, wheréWp = Ay / 2T[2r8, characterize the scale and strength
of adhesion. We refer to Sauer and |Li (2008) for detailedugision ony. andyy. In the current work,
the value ofy. andyy are chosen as.2 and 25 respectively which correspond to the values found in

gecko adhesion [Sauer and Holl (2013)].

C1 (39)

4.1 Interaction of a deformable ball with a rigid surface

First, the interaction of a deformable ball with a rigid sué is considered, see Figlie 1. This example
has also been discussed in detail in Gautam and/Sauer (20t®).diameter of the ball is taken as
Do = 10 Lo. Material damping is not considered. The ball is assumedteeteased from rest. The
initial separation between the ball's center and the rigidege is taken aspnitai = 7Lo + req Where

l'eq IS the equilibrium distance corresponding to the intecaicpotential®,. The finite element mesh
consists of 48 four noded quadrilateral elements. The ti@e ®r the analysis is taken as 0.0Ti
whereTy is the characteristic time of the problem. No adaptive titep@ing is considered. In the
present example, all the cases were run on the same machioettier comparison of the schemes.

Next, the variation of error in energfE, and logarithmic norm of total angular moment@n, 1 with
time is shown in Figure$ (2(a)) ar{d (2(b)). The error in en&§ is defined as

En_ EO
Eo |’

AE = logqp [ (40)
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Deformable ball
Young’s modulus : E = 2 GPa T
Poission’s ratio : v = 0.2
Interaction potential :

Iy Dy = 10 Ly
} }
Tinitial * Ir* = ** * A2

P,

Rigidsuface —y  yyy A 44 yy

Figure 1: Initial configuration of a deformable ball inteiag with a rigid surface. The diameter of the
ball is taken ado = 10Lo, rinitial = 7Lo + req- Here,req is the equilibrium distance corresponding to
the interaction potentiab,. The ball is at rest at= 0.

whereEy andE, are the energies at the start and at tiraet,, respectively. The total angular momentum,
Gn, 1, about the origin at timg,, 1 is expressed as

Nnode

Griz= 3 X3"xpf . (41)
=1

where,xg‘+l and pg‘” are the position vector and total linear momentum of nddespectively. The
results of the scheme proposed|by Gautam and Sauer (2018)sarmcluded. It can be seen that the
Newmark scheme diverges afters 2.5Ty. The error of the scheme proposedLb;LG_aulam_a.ndJSauer

) is the lowest followed by the scheme proposed in tlesgmt work. However, the accuracy
of the proposed scheme is still two order of magnitude highan other collocation-based schemes.
The variation of norm of total angular momentuji@Gn 1|, with time shows that the Bathe composite
scheme and the proposed scheme perform equally well. Hoytbeeaccuracy of the scheme proposed
in B_aula_m_a.nd_s_adeuzdm) is at-least 5 order of magnitigteehthan the proposed scheme. However,
the momentum conservation properties of proposed schemettés thallLG_au_tam_aad_S_dd_eL(ZOB). The
total computation time and computational time per increni®shown in Tabl€]l. The computational
time per increment using Newmark scheme is 0.6150 secomdisqpement where as itis 0.706 seconds
for the proposed scheme. The Bathe composite scheme reduiz@1l seconds per increment. The
reason is that in the Bathe composite scheme each incresnemhiposed of two equal substeps leading
to more computational time. The scheme propds_Qd_G_auIa.ma.lﬂf @Q;LB) takes 8.560 seconds per
increment on the same machine.

Table 1: Computational time required for different schemes

S. No. Numerical scheme Total time (sec) | Time per increment (sed)
1. Newmark (1959) 3784 (until 2.65Tp) 0.615
2. Bathe (2007) 12007 1.201
3. Proposed scheme 7054 0.706
4. Gautam and Sauer (2013) 42810 8.560




4 - - - - 0 i
J/ —Newmark
[ ] H—Bathe

— Proposed LY
* Gautam and Sauer (2013):

— Newmark

: —Bathe

_12 —Proposed I
: - Gautam and Sauer (2013

2 3 4 1 2 3
Time [TO] Time [To]

(a) Errorin energyAE (b) Norm of angular momentum leg(||Gn+1||)

Figure 2: Variation of error in energhE and norm of angular momentum lgg||Gn1||) over time for
various schemes. In (a), it can be seen that the Newmark sctierges at ~ 2.5Tp. The adhesion
parameters arey, = 2.5, iy = 25. The scheme proposedLin_G_auIa.m_a.nd_i’Séusad(ZOB) gives bett
energy conservation.

4.2 Peeling of a deformable strip from a rigid substrate

Next, peeling of a deformable strip from a rigid substratsimulated. Figure[{3) shows the initial
configuration. The geometric and material data are takan Mr@l) The strip is considered to
have a lengtth. = 200y and heighth = 10L,. Plain strain situation is considered. The strip, inijialt
rest, is peeled off the substrate by applying a time varyisgldcementi = u(t) on the right side edge
such that the velocity of pull isf =1 m/s. The displacement is applied with initial ramp-up toiev
initial shock to the strip. The displacement is appliedIuthgY coordinate of the point P (see Hig. 3) is
less than 10Qo.

u, P,
A

Y

200L,
| >
NN
1OL01 Deformable Strip
Pomt P

17777777 /1111111117 a

Rigid substrate

Figure 3: Initial configuration of a deformable strip adhegrio a rigid substrate. The strip is pulled at
u(t) at the right edge, i.e., & = 200 such thau = 1 m/s. AtX = 200Lo, the strip is constrained in
X direction. P, is the unknown reaction force correspondinguito —

The interaction of the strip and the rigid substrate is agslita be governed by the interaction potential
®, given in Eq.[8). Sixteen elements are chosen over the stighbh. The aspect ratio is kept at one.
Adhesive contact is considered along the 75% of the bottofasli.e., fromX = 0to X = 150L,.
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Remark As noted i@@l) linear approximation of the disptaent i.e., Q1C1 contact finite
element, at the contact interface can lead to unphysicdlaiems. These oscillations can be reduced
using enriched contact finite elements, for e.g. Q1C2 and;4at the contact interfd@e Enriched
contact finite elements Q1C2 and Q1C4 correspond to quadkatd fourth order approximation of
displacement at the contact interface. The advantagesrgf @LC2 and Q1C4 elements is discussed
in sectio 4.2.3.

4.2.1 Description of the peeling process

First, the peeling process is explained. The results argepted for the time stefit = 0.01Ty. En-
riched contact finite element Q1C4 is employed at the coméetface. The configurations at different
time instances are shown in Figl (4). The peeling star® at 40T, (Fig.[4(c)). The configuration at
T = 130Ty (Fig.[4()) shows the strip just before it completely peeffsfmom the substrate. Various
intermediate configurations at different time instancesadso shown. The corresponding pull-off force
with time is shown in Fig.[{(5) for the three schemes. The nrark&-J’ on Fig. (8) correspond to dif-
ferent configurations shown in Fid.](4). The phase until pt is when the strip stretches without
peeling. The maximum peel-off force is reached when the-p#edtarts. The phase from 'C’ to 'I’
correspond to stable peeling. After this, the remaining pathe strip snaps off from the substrate
leading to fluctuation in peel-off force as marked in point The simulation is stopped when the strip
has completely peeled-off from the surface. It can be sestraththe schemes have similar response.

The variation of the resultant velocity of point P (see E)gdB different schemes is shown in Fify. (§(a)).
It can be seen that all the schemes give similar responseo&diléations in the response (Fjg. 6(b)) are
because of numerical artifacts which arise due to spat&reiization at the contact interface. Sec-
tion[4.Z.3 further discusses this behavior.

In the further text, the results of this sections are treatedxact results since no closed form solution is
available. In the figures that follow, the tefxact’ is used. Also, in the results that follow the variation

of peel-off force with applied displacement for differergses is only shown at start of the peeling.

Similarly, the variation of resultant velocity with time pbint P for different cases is shown only at the

end of peeling.

4.2.2 Response of the schemes

The response of the three schemes for different time sepati= 1Ty, 0.1 Ty, and Q05T is presented.
Figure [T) shows the pull-off force with time at the start loé tpeeling. Linear displacement interpo-
lation, i.e. Q1C1 contact element, is used at the contaetfatte. The exact result is also included. It
can be seen that as the time step is decreased oscillatipearap the response which is because the
spatial discretization at the contact interface is unablcturately resolve the contact forces (Eg. 9). It
is later shown in sectidn 4.2.3 that the enriched contachetds proposed @Jll) can resolve
the contact forces more accurately. All the schemes, haweiee similar response for all the time
steps. The variation of resultant velocity of point P (seg[B) with time at the end of peeling is shown
in Fig. (8). It can be seen from Fig. (8[(a)) that the proposedithe Bathe’s composite schemes do not
have the oscillatory behavior of the Newmark scheme. Uriphysscillations are observed for all the
schemes with reducing the time step if. = 0.1Ty and 005Ty. However, the oscillations are about
the exact value.

4Seelgj.ﬂefmlll) for detailed discussion on the performafneeriched contact finite elements applied to static pgelin
problems.
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(i) T = 120Tp: | () T = 130Tp: J

Figure 4: Deformed configurations at various time instardesdeformable strip peeling from a rigid
substrate. The interaction between the strip and rigidtealesis assumed frictionless.

4.2.3 Effect of enriched contact finite elements

The oscillations in the response observed in previous@ecising linear interpolation at the contact
interface with decreasing the time step are unphysical. Astioned earlier, this is because the linear
displacement interpolation at the contact interface iblent accurately resolve the contact forces given
by Eqg. [9). To alleviate the problem enriched contact finleements have been proposed recently by

%ﬁ]l). In this work, however, the results are preseior dynamic peeling. Figurgl(9) shows the
details of the pull-off force with time using the proposetiame for three different time steps. It can be
seen clearly, (see Fid. (9(d))), that the unphysical aoity response for smaller time steps is reduced
when using enriched contact finite elements at the conttaface.

Figure [10) shows the plot of resultant velocity of point Bg$ig[B) with time for three different time
steps using the proposed scheme. It can be seen that foediith steps linear interpolation leads to
oscillatory response which are reduced when enriched cofitéte elements are used. The response
using the Q1C4 element for all the time steps is closest toterault.

12
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finite element at the contact interface. The time step uséd is 0.01Ty. All schemes gives similar

response. The oscillations in the response shown in (b)réfacés of the spatial discretization at the
contact interface.

4.2.4 Comment on computational time

We conclude this section by presenting the computationad tequired for various schemes at different
time steps using three enriched contact finite elementseatdhtact interface, see Fif. {11). All the

results have been obtained by running the various caseseosathe machine. It is clearly seen that
the proposed scheme adds very little to the computatiorstlweith respect to Newmark scheme even
when additional degree of freedoms are added by using eatichntact finite elements. Also, it can be

seen that the computational time of the proposed schemensgdewmably lower as compared to Bathe
composite scheme for same contact interface discretizafiis is since the Bathe composite scheme
divides each time step into two equal substeps which leabigter computational cost. The saving in

computational time is particulary beneficial for systemthMarge degree of freedom systems specially
three dimensional cases as discussed next.
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Figure 7: Variation of pull-off force with time using the Q1&lement. The exact results are also
included. The oscillations in the response are becauseroéncal artifacts which arise due to spatial
discretization at the contact interface.

4.3 Peeling of a gecko spatula

Finally, the dynamic pull-off behavior of the gecko spatislanalyzed. First, the Gecko adhesive system
is presented. Then, we discuss the procedure for seletingaiues of the damping parametexs:and

oy, required for Rayleigh damping, see Elq.1(14). Finally, soemesentative numerical results are
shown using the three different time integration schemesidered in the present work.

4.3.1 Gecko adhesive system

One of the remarkable qualities of geckos is their abilitclimb vertical and overhead surfaces and
move around with comparatively high speeds when requirdds femarkable quality has led to sig-
nificant research in understanding the underlying mechanisf gecko adhesian Figure [12) shows
the gecko adhesive system. In the figure, 'A’ shows a geclasitte of which is approximately 10 cm
while "B’ shows the toes of the gecko foot with hundreds ofgtlef lines of hair-like structures called
thelamellaof approximately 1-2 mm in size. Further zooming in ('C’ iretfigure) shows hundreds of
micrometer size~{100um) fine hairs called theeta An individual seta is shown in 'D’ which branches

14



4

0
o
ol

o
»
Q@

o
D
@

Resultant velocity of P %:I’

o
a

Resultant velocity of P %:I'al]

%40 105 110 115 120 125 %Yo 105 110 115 120 125
Time [To] Time [To]

(@) At =1To (b) At = 0.1Ty

—Newmark
—Bathe
Proposed

_1]

0
o
ol

Resultant velocity of P %:I’

%40 105 110 115 120 125
Time [To]

(c) At = 0.05To

Figure 8. Variation of resultant velocity of point P with trusing different time steps and Q1C1 en-
riched finite element at the contact interface. All schemessgsimilar responses. Smaller time steps
lead to unphysical oscillations in the response.

into hundreds of finer hair-like structures (further zooneéhset 'E’) called spatulae (see F[g.]13 for
the microscopic images of an individual spatula). Thesdusga transfer the adhesive and frictional
forces between the gecko and the substrate through largeamieal deformations and rotations. The
spatulae form an elemental part in the understanding ofggadkesion. Thus, it is clear that the gecko
adhesive system is a complex multi-level hierarchial stmec Understanding the adhesive mechanism
of gecko, thus, requires first understanding the peelinghdehof an individual spatula.

4.3.2 Details of applied load and finite element mesh of a gealspatula

Before we present the numerical analysis of dynamic peelirsggecko spatula, we present the loading
condition and finite element mesh considered for a singl&aspatula. The detailed geometry model
of the spatula has been presented and discussed in detafbhemcesL[_SadeL(ZdOi);_S_au&LandJHoll
@)]. Figure [(TW) shows the the initial configuration b tspatula. The interaction of the gecko
spatula and the rigid substrate is assumed to be governéx laytéraction potentiab, given in Eq. [8).

A vertical displacementi = u(t) is applied to the spatula shaft such that a constant pulificity

u =1 m/sis achieved. The final pull-off velocity is reached aéte initial ramp-up so as to avoid sudden
loading of the spatula. The finite element mesh of the gecktutpconsists of 114,414 elements and
363,144 degrees of freedom. A 3D enriched contact finite eftfrsee referenc@u@ml)], is
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Figure 9: Variation of pull-off force with time using the grosed composite scheme. The exact results
are also included. The oscillations, as seen in [fig. (9{d)jhe response are because of numerical
artifacts which arise due to spatial discretization at thatact interface.

employed at the contact interface. Also, to avoid using \&nall time steps numerical damping is

considered. The procedure for choosing the damping caaifigi based on numerical experiments, is
discussed next.

4.3.3 Choice of damping parametersi; and o

In the present work, we focus only on stiffness proportiatehping such that; = 0. A free vibration
analysis of the gecko spatula is carried out using the News@reme and the Bathe composite scheme
for selecting an appropriate value fap. Figure [15) shows the variation of X and Z coordinates of
a point P (see Fig._14) on the spatula pad for the case with Nekvstheme for different value of
0». It can be seen that some values lead to over damped respdiilseotiher values lead to under
damped response. Also, it can be seen that for the case withmping the Newmark scheme fails after
t = 180Ty. For the results that followg, = 0.004/ns is chosen for simulations. Figurel(16) shows the
comparison of Newmark and Bathe composite scheme. It carbalsbserved that the Bathe composite
scheme is long time stable. Both the schemes give similporsg when damping is considered.
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time steps and different enriched finite element. It can le@ $kat use of enriched contact elements
leads to reduction in oscillatory response.

4.3.4 Numerical analysis of gecko spatula peeling

Here, we present results for the dynamic peeling of gecktukpérom a rigid substrate. Figure(17)
shows the spatula configuration at different time instanddé® Bathe composite scheme is employed
for time integration. The peeling front can be seen movinog@lthe spatula surface.

Next, the performance of proposed scheme is compared withimdek and Bathe composite scheme.
The variation of pull-off force with time for the three schesis shown in Fig[(18). The response of the
Newmark scheme shows spurious oscillations (Fig. 18(b)levthe Bathe composite scheme as well as
the proposed scheme give a smoother response. Also, it caeebdhat the Newmark scheme diverges.
After the spatula has completely peeled-off the vibratiohihe spatula are quickly damped when using
the Bathe composite scheme as the kinetic energy quicklycesdto zero, see Fid. (19). However,
for the case when the proposed scheme is used, the spatillatesdor longer. This is because the
kinetic energy decreases slowly, see Higl (19). Howevereference results are available to ascertain
the accuracy of the schemes for the post peel-off behavior.

The maximum spatula pull-off force, which is reached praiocomplete peel off, is- 8 nN. This value
is in agreement with measured spatula pull-off loads reylart the literature, e.gL_LHJ.Lb_er_eﬁ al D05);
Sun é; al. [(2005)]. However, the experimental force disiaent results reported & al.

) have been performed on a seta where the seta is polleghérallel and perpendicular to the sur-
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Figure 11: Computational time required for various scheatelkfferent time steps using three enriched
contact finite elements at the contact interface.

face. A single seta consists of around 100-1000 spatulaacd;i¢he results reported t al.
) are combined results of all the spatulae and not #essm@tula. Hence, for around 1000 spatu-

lae, an estimate based on results of single spatula of ¢um@k results in maximum pull off force of

8 uN. This is in range of the perpendicular pull-off force relpdrinLAulumn_el_dl.L(ZO_CbO) (see Fig. 4

in the reference). However, since in the present work thaltseeeported are based on a single spatula,

to simulate the experimental data reported_b;LAuluanelrzaD_(b), a detailed simulation of peeling of

seta is required. Such a study will be carried out in a futupekw

Figure [20(d)) shows the computational effort i.e., corapabal time required per increment, for spatula
peeling using different schemes. It can be seen that theopeapscheme adds very little to the overall
computational effort. As seen from Fi§. (24(b)), the coragional effort per increment per NR iteration
is higher for the proposed scheme. However, since the nuofbRR iterations per increment (see
Fig[20(c)) is much higher for the Bathe composite scheme {@selving the equation of motion twice
in each time step), the over all computational time of thehBatomposite scheme is higher.

5 Concluding remarks

Dynamic adhesive contact simulations specially involviegling have attracted very little attention. In
the present work, a composite time integration scheme gosed for simulation of dynamic adhesive
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Figure 12: Gecko adhesive system. Notice the multi-levetdrchial structure of the gecko adhesive
system. In the figure: 'A’ shows a gecke (L0 cm), 'B’ shows a gecko foot with hundreds of hair-like
structure called théamellas(~ 1-2 mm), 'C’ shows the zoomed view of the gecko pad showing the
setas(~ 100um), 'D’ shows a single geckeetg and 'E’ shows zoomed view of the tip of seta showing
the so-calledspatulae Figures have been adapted with permission from Autumn ¢2@06).

contact problems. The performance of the proposed scheoognipared with two class of collocation-
based schemes: Newmark scheme which is a parameter-bdsadesand Bathe composite scheme
which is a parameter-free scheme. Following conclusioasleawn based on the numerical simulation
of a number of example problems:

1. The Bathe composite scheme and the proposed scheme ataanfor all the cases. The New-
mark scheme diverges for some cases.

2. In the first example i.e., dynamic interaction of a defdshadall with a rigid surface, it is shown
that the proposed scheme leads to accuracy gains and agdstheto the overall computational
effort.

3. All the schemes give similar response for the peeling adfarthable strip from a rigid substrate.
However, the computational cost of the proposed schemediiesraompared to Bathe composite
scheme and only marginally higher compared to the Newmdn&rse.

4. The Newmark scheme diverges in the peeling of a gecko lspfitam a rigid substrate. The
Bathe composite scheme and the proposed scheme are abiteutatsithe spatula behavior after
the complete peel off. It is also shown that the computatieffart required using the proposed
scheme is lower.

The presented work is highly relevant to general adhesidrdabonding problems. Further considera-
tion are incorporation of friction effects and material gang.
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Figure 17: Spatula deformation for an applied vertical ldispmenu(t). The color scale shows the first

invariant of stress normalized by Young’s modukusThe value of the color plots ranges from -0.125
to 0.250E.
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Figure 18: Spatula pull-off force with applied displacemesing different schemes. Figure (a) shows
the full plot where as figure (b) shows the zoomed view at maxinpull-off force. It should be noted
that the Newmark scheme diverges. The spurious oscilkiiothe response of Newmark scheme are

clearly visible in Fig. (b) which are not present for the Battomposite scheme and the proposed
scheme.
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Figure 19: Variation of kinetic energy with time for differeschemes. For the case with Bathe composite
scheme, the kinetic energy quickly damps out where as fopithigosed scheme it decreases slowly .
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Figure 20: Comparison of computational effort requireddimnulating the peeling of a gecko spatula
using different schemes. It can be seen that the compushidiort required using the proposed scheme
is lower.
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