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Abstract: Numerical solution of dynamic problems require accurate temporal discretization
schemes. So far, to the best of authors’ knowledge, none have been proposed for adhesive contact
problems. In this work, an energy-momentum-conserving temporal discretization scheme for
adhesive contact problems is proposed. A contact criterion is also proposed to distinguish
between adhesion dominated and impact dominated contact behavior. An adhesion formulation
is considered which is suitable to describe a large class of interaction mechanisms including van
der Waals adhesion and cohesive zone modeling. The current formulation is frictionless and no
dissipation is considered. Performance of the proposed scheme is compared with other schemes.
The proposed scheme involves very little extra computational overhead. It is shown that the
proposed new temporal discretization scheme leads to major accuracy gains both for single and
multi degree of freedom systems. The single degree of freedom system is critically analyzed for
various parameters affecting the response. For the multi degree of freedom system, the effect
of the time step and mesh discretization on the solution is also studied using the proposed
scheme. It is further shown that a temporal discretization scheme based on the principle of
energy conservation is not sufficient to obtain a convergent solution. Results with higher order
contact finite elements for discretizing the contact area are also discussed.

Keywords: adhesion, energy-momentum conserving schemes, nonlinear finite element meth-
ods, computational contact mechanics, temporal integration schemes, nonlinear dynamics

1 Introduction

Dynamic effects play an important role in engineering problems especially in the context of con-
tact. A special class of contact problems are adhesive contact problems. Examples are thin film
adhesion, surface coating, insect and lizard adhesion, rubber adhesion, MEMS, joining, bond-
ing, and soldering. Apart from efficient contact algorithms, accurate temporal discretization
schemes are required to obtain accurate numerical solutions.

Temporal discretization schemes can be classified in to two different categories: collocation-

based schemes and energy-momentum-conserving schemes (Krenk, 2009). In collocation-based
schemes, the equation of motion is satisfied at selected points in the time interval [tn, tn+1]. In
contrast, for energy-momentum-conserving schemes, the equation of motion is integrated over
the time interval [tn, tn+1]. The Newmark scheme (Newmark, 1959), which is a collocation based
scheme, may induce significant errors in the numerical solution which may lead to divergence
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of the numerical solution. The reason for this is that the adhesive contact behavior is highly
nonlinear. Also, it is well known that even for linear systems Newmark scheme conserves energy
and momentum only for a special choice of parameters. Recently, a parameter free collocation-
based composite temporal discretization scheme has been proposed by Bathe (2007) with the
objective to conserve energy. Alternatively, energy-momentum-conserving schemes have been
developed with the idea of conserving properties of the underlying problem i.e., energy and
momentum. The energy-momentum-conserving schemes have been applied to elastodynamics
through the pioneering work of Simo and Tarnow (1992). They presented a new methodology for
the construction of time integration algorithms, called energy-momentum-conserving algorithms
(EMCA), that inherit, by design, the conservation laws of momentum and energy. Later, (Betsch
and Steinmann, 2001) used a nonstandard quadrature formula, based on the discrete gradient
method of (Gonzalez, 1996), for studying the energy conservation in nonlinear elastodynamics.
Recently, Hesch and Betsch Hesch and Betsch (2009, 2010) have developed a new energy-
momentum-conserving scheme by extending the discrete gradient method of Gonzalez (1996)
and the one-step method of Betsch and Steinmann (2001) for contact-impact problems using
the mortar finite element method.

Although a number of temporal discretization schemes have been developed for contact-impact
problems (see e.g. Laursen and Love, 2002; Bravo et al., 2011), it seems, to the best of au-
thors’ knowledge, that so far none has been proposed for dynamic adhesive contact problems.
Collocation-based schemes are known for the loss of conservation properties specially in the case
of sudden shocks in the system. On the other hand, energy-momentum-conserving schemes
have been shown to be conservative and stable. Since, the class of problems considered in
the present work focuses on potential based formulations, developing an energy-momentum-
conserving scheme seems to be a natural choice. The objective of the current work is to pro-
pose an energy-momentum-conserving temporal discretization scheme which is accurate and
conserves energy for a conservative system. It is believed that the proposed scheme will be
advantageous in the simulation of complex dynamic adhesive contact problems like the peeling
of gecko spatule from rough surfaces.

The remainder of this paper is structured as follows: Section 2 provides an overview of the
adhesion model used to describe the adhesive contact between deformable bodies. Section 3
first presents the weak formulation of the dynamic adhesive contact problem. Then, the finite
element formulation is presented. Section 4 presents the proposed energy-momentum-conserving
temporal discretization scheme for adhesive contact. In Sections 5 and 6, results of some
representative numerical examples are presented. Section 7 concludes this paper.

2 Adhesion Model

2.1 Adhesion formulation

In this section, a brief overview of the adhesion formulation considered here is presented which
is suitable to describe a large class of interaction mechanisms like classical contact with penalty
and barrier formulations, physical interaction formulations like cohesive zone models as well
as electrostatic, gravitation, and van der Waals interactions, (see Sauer and Lorenzis, 2012).
The formulation is based on a Lagrangian description. According to the model, the interaction
between two deformable bodies Bk (k = 1, 2) can be described by the contact interaction
energy

Πc =

∫

∂Bk

βs
k Φℓ dak , (1)
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where βs
k is the current surface density at xk ∈ ∂Bk, defined as the number of interacting

particles per current surface area, and Φℓ denotes the interaction potential between a particle
at xk and the neighboring body Bℓ (ℓ 6= k). The potential Φℓ depends on the distance, rs,
between xk and surface ∂Bℓ. Here, we consider the number of surface particles to be conserved
during deformation such that

βs
k dak = βs

0k dAk = const. (2)

where βs
0k is the reference surface density and dAk is the reference area. This assumption is

reasonable for solids. The variation of Πc, due to variations of the configuration xk = ϕk (Xk),
denoted δϕk, now becomes

δΠc, k =

∫

∂B0k

βs
0k

∂Φℓ

∂xk
· δϕk dAk . (3)

In this equation, we can identify the interaction force

F k := −∂Φℓ

∂xk
= −∂Φℓ

∂rs
np , (4)

acting at xk where rs denotes the signed distance between point xk ∈ ∂Bk and surface ∂Bℓ, i.e.,

rs(xk) := (xk − xp) · np , (5)

where xp ∈ ∂Bℓ and np denotes the position of closest projection point of xk on ∂Bℓ. The
current surface traction

tk = βs
k F k , (6)

acting on dak, and the reference surface traction

T k = βs
0k F k , (7)

that corresponds to the scaling of tk by the area change dak/dAk. As mentioned at the beginning
of the section, for suitable definitions of Φℓ, one can consider various contact formulations (Sauer
and Lorenzis, 2012). In this paper, we focus on two cases, van der Waals adhesion and cohesive
zone models. For van der Waals adhesion (Israelachvili, 1991), we have

Φℓ :=
Φ0

Jsℓ

[

1

360

(
r0
rs

)8

− 1

6

(
r0
rs

)2
]

, rs > 0 , (8)

Here, Φ0 and r0 are model constants and Jsℓ = dak/dAk = βs
0k/β

s
k characterizes the surface

deformation. This expression can also be derived from the Lennard Jones potential

φ(r) = ǫ
(r0
r

)12

− 2ǫ
(r0
r

)6

, r = ||x1 − x2|| , (9)

between the points x1 ∈ B1 and x2 ∈ B2, (see Sauer and Wriggers, 2009). Here, ǫ is an energy
parameter. Parameter r0 denotes the equilibrium distance of the Lennard Jones potential.

Secondly, we consider the exponential cohesive zone model

Φℓ := −Φ0

(

1 +
rs
r0

)

exp

(

1− rs
r0

)

, rs ∈ R , (10)

(Sauer and Lorenzis, 2012), to describe mode I de-cohesion. Here, r0 is the parameter of the
model. This formulation is a special case of the Xu-Needleman model (Xu and Needleman,
1993). Models (8), (9), and (10) are used in the examples of sections 5 and 6. In the present
work, only frictionless normal contact is considered. It should be noted that, in theory, these
potentials and hence, the interaction forces, are smooth functions of distance and time. How-
ever, when the domain is discretized spatially and temporally, these functions can appear as
non-smooth functions. The non-smoothness of the function will depend on the spatial and tem-
poral discretization. An adaptive spatial or temporal discretization is then required for smooth
behavior approximation.
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2.2 Impact-adhesion criterion

For the classification of dynamic adhesive contact problems, we distinguish between adhesion
dominated and impact dominated problems. For example, a body hitting a wall at large veloci-
ties is typically dominated by the impact behavior, while the peeling of an adhering strip, on the
other hand, is typically dominated by the adhesion behavior. Formally, we base this distinction
on the extreme values of the contact energy that are attained during contact interaction.

Let us first consider a single point xk interacting with body Bℓ. The interaction force F k acting
at xk, according to Eq. (8) or (10), is shown schematically in Fig. (1). Let us now consider

adhesion energy

repulsion energy

r
eq

r
rep

r
adh r

s
 →

T
k ⋅ 

n p →

Figure 1: Schematic plot of the traction-separation behavior according to models given by
Eqs. (8) and (10).

an interaction process over time t, where the distance between xk and ∂Bℓ ranges between the
extreme distances rrep < req and radh > req, i.e.,

radh := max
∀ t

rs , (11)

rrep := min
∀ t

rs , (12)

as is shown in Fig. (1). Here, req is the distance at which there is no traction acting at a point.
We can then compute the maximum adhesion energy and maximum repulsion energy that is
attained during the process as

Φadh
ℓ (xk) :=

∫ req

radh

F k · np drs = Φℓ(radh)− Φℓ(req) ,

Φrep
ℓ (xk) :=

∫ req

rrep

F k · np drs = Φℓ(rrep)− Φℓ(req) ,

(13)

where the signs are chosen such that Φadh
ℓ > 0 and Φrep

ℓ > 0. With this we define the following
classification for the behavior of point xk:

Φadh
ℓ > Φrep

ℓ : adhesion dominated problem,

Φadh
ℓ < Φrep

ℓ : impact dominated problem.
(14)
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Remarks:

1. In case Φadh
ℓ ≪ Φrep

ℓ , the behavior corresponds to that of a classical contact problem
without adhesion. Formulations (8) and (10) can then be viewed as a regularized penalty
formulation.

2. If Φℓ is the only potential energy in the system, and no dissipation is considered, we have
Φadh
ℓ = Φrep

ℓ . This is considered in some of the examples shown in section 5.

3. If additional potential energy, e.g., strain energy, is present in the system, it may substan-
tially exceed both Φadh

ℓ and Φrep
ℓ during interaction. In this case the problem is neither

dominated by adhesion nor impact, since the contact interaction becomes insignificant.
Examples are shown in section 5.

Classification (14) can be extended to interacting bodies, if we consider the integration

Πadh
c :=

∫

∂Bk

βs
k Φ

adh
ℓ (xk) dak ,

Πrep
c :=

∫

∂Bk

βs
k Φ

rep
ℓ (xk) dak .

(15)

in analogy to Eq. (1). It should be noted that, in general, both Φadh
ℓ and Φrep

ℓ , due to Eqs. (11)
and (12), are attained at different instances in time across ∂Bk. Hence, the integrals of Eq. (15)
are not carried out at the same instance in time. The quantities Πadh

c and Πadh
c are therefore

measures that characterize adhesion and impact behavior of Bk during a given contact interac-
tion process. The behavior of body Bk can then be classified in analogy to Eq. (14) now using
Πadh

c and Πrep
c . The remarks given above extend correspondingly, see also appendix A.

3 Weak Formulation and Finite Element Discretization

In this section, we outline the weak form for the dynamic interaction between two general
continua B1 and B2 and also present the finite element formulation. The Lagrangian of the
system, L, is given by

L = K − Π , (16)

where

K =
2∑

k=1

Kk =
2∑

k=1

1

2

∫

Bk

ρkvk · vk dvk (17)

is the kinetic energy of the two-body system with vk = ẋk and ρk is the current density. The
potential energy, Π, is given by

Π = Πint + Πc − Πext , (18)

where Πint =
2∑

k=1

Πint,k is the internal energy of the system with Πint,k =
∫

B0k
WkdVk. Here,

Wk is a scalar-valued strain energy density function and Πext is the external energy of the
system. The contact energy Πc is given by Eq. (1). In the problems considered in the present
work, Πext = 0. From Eq. (16), weak form for the dynamic problem can be derived as

2∑

k=1

[∫

Bk

δϕk · ρkẍk dvk +

∫

Bk

grad (δϕk) : σk dvk −
∫

∂Bk

δϕk · tk dak
]

= 0 ,∀ δϕk ∈ Vk ,

(19)
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where Vk is the space of kinematically admissible variations of deformation ϕk, (see references
Sauer, 2006; Sauer and Li, 2007) for details. In the weak form (Eq. 19), the Cauchy stress
tensor σk in Bk is obtained from a constitutive model like a hyperelastic model. In this work, a
particular form of a hyperelastic model i.e., the Neo-Hookean material model (Zienkiewicz and
Taylor, 2005), given by

W =
µ

2
(trB − 3) − µ lnJ +

Λ

2
(ln J)2 , (20)

has been considered. Here, B is the left Cauchy-Green tensor and J =
√
detB. In the above

expression, µ and Λ are the Lamé constants.

Next, we present the finite element formulation for the weak form corresponding to Eq. (19).
We consider a displacement-based finite element description. The domains Bk and ∂Bk are
partitioned into volume elements Ωe

k and surface elements Γe
k each containing nn nodes. For the

volume element Ωe
k, nn = nve and for the surface element Γe

k, nn = nse. Within each element,
the displacement field u and the variations δϕ are approximated by the interpolations

u ≈ Neu
e , δϕ ≈ New

e , (21)

where ue and we denote the displacement and variations of the nodes of element e and the
matrix Ne is given as

Ne = [N1I, N2I, . . . , Nnn
I] , (22)

which is a [ndim × (ndim · nn)] matrix formed by the nn shape functions NI (I = 1, 2, . . . , nn)
of the element. Here, ndim ≤ 3 is the dimension of the Euclidean space occupied by the reference
configuration of the solid body Ωe

0k and I is an identity matrix of size (ndim × ndim). Inserting
approximations (21) into the weak form (19) and assembly over all the volume and surface
elements leads to

wT [Ma + fint + fc] = 0 , ∀w ∈ Vh , (23)

where Vh is the space of admissible nodal displacements, M is the globally assembled consistent
mass matrix, a (= ü) is the globally assembled acceleration vector and fint and fc are the
globally assembled internal and contact force vectors. These vectors are assembled from the
elemental vectors f eint,k and f ec,k. The internal force vector f eint,k acting on the nve volume nodes
of the volume element Ωe

k and the elemental contact force vector f ec,k acting on the nse surface
nodes of the surface element Γe

k, and the elemental mass matrix Me
k are given as

f eint,k =

∫

Ωe

k

BT
e σ

e
kdvk , (24)

f ec,k = −
∫

Γe

k

NT
e tkdak = −

∫

Γe

0k

NT
e T kdAk , (25)

Me
k =

∫

Ωe

k

ρkN
T
e Nedvk , (26)

where Be is an array that contains the derivatives of the nodal shape functions NI . Guidelines
on practical implementation of Eqs. (24) - (26) can be found in finite element textbooks, (see eg.
Wriggers, 2008). In the present work, damping is not considered. However, it can be included
by considering dissipative material behavior or in an ad hoc manner, e.g. by using Rayleigh
damping.
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4 Energy-Momentum-Conserving Temporal Discretization Scheme

A system of second-order ordinary differential equations are obtained from Eq. (23) after noting
that the variations w are arbitrary. The equations are then written at time t = tn+1 as

Man+1 + fn+1
int + fn+1

c = 0 . (27)

Given the displacement un, velocity vn and acceleration an at time t = tn, the objective
now is to find un+1, vn+1 and an+1 at time t = tn+1. In the present work, we focus on an
energy-momentum-conserving implicit scheme proposed by Betsch and Steinmann (2001) as
it exploits the potential formulation of the system to enforce the conservation of energy and
momentum. Extending the linear time finite element formulation3 of Betsch and Steinmann
(2001) by incorporating adhesive contact, the general time finite element equations can be
written as

xn+1 − xn − ∆t

2
M−1 ·

(
pn+1 + pn

)
= 0 , (28)

pn+1 − pn +

∫ tn+1

tn

(fint + fc) dt = 0 , (29)

where xn+1 and xn are the coordinate vectors, and pn+1
(
= Mvn+1

)
and pn (= Mvn) are

the momentum vectors at time tn+1 and tn respectively. The update for the velocity can be
derived from Eq. (28) as

vn+1 =
2

∆t

(
xn+1 − xn

)
− vn , (30)

To facilitate further derivations, the time finite element in the time interval T ∈ [tn, tn+1]
is mapped to a master element with local coordinate α ∈ [0, 1] where α(t) = (t − tn) /∆t
with ∆t = (tn+1 − tn). Further, Eqs. (28) and (29) are expressed for each node J (J =
1, 2, . . . , nnode where nnode are total nodes). Then, we obtain

xn+1
J − xn

J − ∆t

2

nnode∑

K=1

M−1
J K

(
pn+1
K + pn

K

)
= 0 , (31)

pn+1
J − pn

J + ∆t

∫ 1

0

(
fJint + fJc

)
dα = 0 , (32)

where MJ K are the submatrices of the consistent mass matrix M associated with nodes J and
K. The solution procedure is discussed next. Substitution for pn+1

J from Eq. (31) in Eq. (32),
the residual momentum vector pn+1

res,J is obtained as

pn+1
res,J

(
xn+1
K

)
=

2

∆t

nnode∑

K=1

MJ K

(
xn+1
K − xn

K

)
− 2pn

J +∆t

∫ 1

0

(
fJint + fJc

)
dα = 0 , (33)

with J = 1, 2, . . . , nnode. Now, p
n+1
res,J

(
xn+1
K

)
is a system of nonlinear algebraic equations which

can be solved using Newton-Raphson method after assembly over all the nodes. The corre-
sponding tangent matrix for node J needed for Newton-Raphson iterations is expressed as

Ln+1
JK :=

∂pn+1
res,J

∂xn+1
K

=
2

∆t
MJ K + ∆t

∂

∂xn+1
K

[∫ 1

0

(
fJint + fJc

)
dα

]

. (34)

3In the present work, we focus on the linear time finite element method. However, the derivations that follow
can be easily extended to higher order time finite element methods.
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It is pointed out that the conservation of linear momentum is enforced automatically through
Eq. (33). As discussed in Betsch and Steinmann (2001), for the scheme to have the underlying
conservation properties of the continuum system, an applicable quadrature rule needs to satisfy
certain conditions. Since, the balance of linear momentum is already ensured though Eq. (33),
we next focus on derivation of conditions enforced by the requirement for conservation of angular
momentum and energy on the quadrature rule. These conditions in turn restrict the number of
quadrature rules that can be applied.

4.1 Condition for algorithmic conservation of angular momentum

In the present work, the condition for algorithmic conservation of angular momentum in Betsch
and Steinmann (2001) is extended to take into account adhesive contact. The total angular
momentum, Gn+1, about the origin at time tn+1 is expressed as

Gn+1 =

nnode∑

J=1

xn+1
J × pn+1

J . (35)

Substituting for xn+1
J and pn+1

J from Eqs. (31) and (32) and noting that Gn =
∑nnode

J=1 xn
J ×pn

J ,
the condition for algorithmic conservation of angular momentum follows as

Gn+1 = Gn − ∆t

nnode∑

J=1

xJ
m ×

∫ 1

0

(
fJint + fJc

)
dα , (36)

where xJ
m =

(
xn+1
J + xn

J

)
/2. Hence, for angular momentum to be conserved i.e., Gn+1 = Gn,

the condition
nnode∑

J=1

∫ 1

0

(
fJint + fJc

)
dα× xJ

m = 0 , (37)

should be satisfied. It can be seen that for angular momentum to be conserved, the integrals
should be evaluated exactly. Thus, the conservation of angular momentum depends on the
quadrature rule employed to evaluate the time integrals. One choice, for example, can be
standard Gauss quadrature similar to that applied for evaluating the components emanating
from the spatial discretization. The effect of using standard Gauss quadrature is studied later
in sections (5) and (6). Note, however, that the Gauss quadrature may not be exact and hence,
the angular momentum may not be conserved exactly. Thus, Eq. (37) limits the number of
applicable quadrature rules for evaluating

∫ 1

0

(
fJint + fJc

)
dα.

4.2 Condition for algorithmic energy conservation

Next, we derive the condition imposed on the applied quadrature emanating from the condition
of algorithmic energy conservation. We derive the condition for the contact part. For the
derivation of condition corresponding to the internal force we refer to Betsch and Steinmann
(2001). Again, the time finite element formulation, corresponding to linear time finite element,
after considering the adhesive contact implies that (Betsch and Steinmann, 2001)

∫ 1

0

(fint + fc) dα ·∆x + M−1

∫ 1

0

pdα ·∆p = 0 . (38)

where ∆x = xn+1 − xn and ∆p = pn+1 − pn. It can be shown (Betsch and Steinmann, 2001)
that the second integral in Eq. (38) can be expressed as

∫ 1

0

d

dα

[
1

2
p ·M−1p

]

dα = Kh
n+1 − Kh

n , (39)
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where Kh
n+1 and Kh

n denote the kinetic energy at time tn+1 and tn respectively4. Hence, for
algorithmic energy conservation the quadrature rule should fulfill the following condition

∫ 1

0

(fint + fc) dα ·∆x = Πh,n+1
int + Πh,n+1

c − Πh,n
int − Πh,n

c , (40)

where Πh,n+1
int and Πh,n

int denote the total strain energy and Πh,n+1
c and Πh,n

c denote the contact
energy at time tn+1 and tn respectively. We note that, in the present work, the contact force
fc given by Eq. (25) depends on tk which from Eqs. (4) and (8) depends on distance rs. Hence,
it does not depend on the internal force fint. Also, the internal energy Πh

int and the contact
energy Πh

c do not depend on each other. Following this observation, the expression (40) should
now hold independently for internal and contact contributions. Next, the condition for the
algorithmic energy conservation given by Eq. (40) is used to derive an exact expression in-terms
of contact traction T k and interaction potential Φℓ. Now, in the case of a system with no
internal energy Eq.(40) reduces to

Πh,n+1
c − Πh,n

c −
∫ 1

0

fc dα ·∆x = 0 . (41)

It can be seen that energy can be conserved only when the integral
∫ 1

0
fc dα is evaluated exactly.

Using Eqs. (1) and (2) in Eq. (41) and taking the integral outside the summation, we get the
corresponding local statement as

βs
0k

[
Φℓ

(
xn+1
k

)
− Φℓ (x

n
k)
]
+

∫ 1

0

T k dα ·∆xk = 0 , (42)

where ∆xk = xn+1
k − xn

k . This is the condition which the quadrature rule employed should
satisfy in order to algorithmically conserve contact energy and hence, the total energy of the
system. One obvious choice for integration is the standard Gaussian quadrature rule that can
be easily used for the computation of the time integrals. However, we consider an alternative
approach which exactly fulfills the algorithmic energy and momentum conservation condition.
This approach is based on the concept of the discrete gradient (Gonzalez, 1996). First, the
integral

∫ 1

0
T k dα in Eq. (42) can be rewritten using, Eqs. (4) and (7), as

∫ 1

0

T k dα = −βs
0k

∫ 1

0

∂Φℓ

∂xk
dα . (43)

The current formulation is written for two deforming bodies. In this general case, the interaction
potentials Φ1 and Φ2 are often approximated. This can lead to a loss of momentum conservation.
This will be investigated in future work. In the remaining cases, we focus on interaction with
rigid surfaces. The discrete gradient (Gonzalez, 1996) corresponding to the integral −

∫ 1

0
∂Φℓ

∂xk
dα

is proposed as

−
∫ 1

0

∂Φℓ

∂xk
dα := ∇Φℓ

:= (−I + ∆x̄k ⊗∆x̄k)DΦℓ (xm) +
−Φℓ

(
xn+1
k

)
+Φℓ (x

n
k)

‖∆xk‖
∆x̄k, (44)

where ∆x̄k = ∆xk/ ‖∆xk‖, I is the identity matrix and xm =
(
xn+1
k + xn

k

)
/2. Here, D (•)

denotes ∂ (•) /∂xk. Substitution of Eq. (44) in Eq. (42) shows that the algorithmic contact

4The superscript h is used to signify that the values correspond to discrete system.
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energy is conserved. Hence, the expression for the time integral corresponding to contact force
in Eq. (33) can be written as

∫ 1

0

fc dα =

ne∑

e=1

∫ 1

0

f ec,k dα =

ne∑

e=1

∫

Γe

0k

βs
0kN

T
e ∇Φℓ dAk . (45)

The time integrals in Eqs. (33) and (34) can be computed using either standard Gaussian quadra-
ture or by employing a nonstandard quadrature rule like the discrete gradient method (Betsch
and Steinmann, 2001). The formulation for the integral of the internal force has been discussed
in Betsch and Steinmann (2001) and hence, is skipped. We next focus on the contact part
arising from the adhesive contact potential. The finite element tangent matrix corresponding
to the discrete gradient proposed in Eq. (44) is given by

Ln+1
c =

ne∑

e=1

Le,n+1
c , where Le,n+1

c =
∂

∂ue,n+1

(∫ 1

0

f ec,k dα

)

. (46)

Using Eq. (25), we can write

Le,n+1
c = −

∫

Γe

0k

NT
e

∂

∂xn+1
k

(∫ 1

0

T k dα

)

Ne dAk . (47)

Using Eq. (44) for
∫ 1

0
T k dα in Eq. (47), we get the element tangent matrix as

Le,n+1
c = −

∫

Γe

0k

NT
e ∇ΦℓNe dAk , (48)

where ∇Φℓ is given by

∇Φℓ =
S1

‖∆xk‖
∆x̄k ⊗np − 2 · S2

‖∆xk‖2
∆x̄k ⊗∆x̄k +

S2

‖∆xk‖2
I +

∂Tk (xm)

∂rs
np ⊗np . (49)

The scalars S1 and S2 are given as

S1 = Tk

(
xn+1
k

)
− ∂Tk (xm)

∂rs
∆xk · np − Tk (xm) , (50)

S2 = −Φℓ

(
xn+1
k

)
+ Φℓ (x

n
k) + DΦℓ (xm) ·∆xk . (51)

Here, T k = Tknp where Tk = βs
0k

∂Φℓ

∂rs
.

4.3 Schemes used for performance evaluation

As mentioned earlier, so far no temporal discretization scheme has been applied for dynamic
adhesive contact problems. However, collocation based schemes can also be used for tempo-
ral discretization. In the discussions that follow, the performance of the proposed scheme is
also compared with two collocation based schemes. The schemes selected are the Newmark
scheme (Newmark, 1959) and a composite scheme recently proposed by Bathe (2007). New-
mark’s scheme falls in the category of parameter-based family of collocation schemes as two
parameters, usually denoted by γ and β, are needed in the approximation formulas for displace-
ment and velocities. In the present work, γ = 1/2 and β = γ/2 are chosen which conserves
energy and momentum for linear systems. The composite scheme proposed by Bathe (2007)
falls in the category of parameter-free family of collocation schemes as no parameter is needed
to be chosen or adjusted.
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5 Numerical Example 1: Analysis of a single degree of freedom

adhesion problem

In this section, we investigate the adhesive contact between two mass points, see Fig. (2). The
interaction of the moving mass with the fixed mass is assumed to be governed by an interaction
potential Πc = φ(x) where φ(x) is given by Eq. (9). Two cases are analyzed viz., with both
the internal and contact energies (Π = Πint + Πc, see Fig. 2(a)) and with the contact energy
(Π = Πc, see Fig. 2(b)). The total energy, E, of the system shown in Fig. 2(a) is given by
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(a) Π = Πint + Πc
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(b) Π = Πc

Figure 2: Two point masses interacting with Πc = φ(x), see Eq. (9). In (a) the moving mass
is assumed to have an internal energy source modeled as a spring while in (b) the moving mass
has only contact energy.

E = K + Π =
1

2
mẋ2 +

1

2
ksp (x − x0)

2 + Πc , (52)

where ksp is the spring stiffness and x0 is the equilibrium position of the spring-mass system
alone. The equation of motion is obtained by setting ∂E/∂t = 0 which, ∀ẋ, leads to

mẍ + ksp (x − x0)
︸ ︷︷ ︸

term 1

+ φ,x
︸︷︷︸

term 2

= 0 . (53)

To analyze the problem, Eq. (53) is first nondimensionalized. When both terms 1 and 2 are
considered (Fig 2(a)), Eq. (53) is nondimensionalized by first defining

X =
x

x0
, X

′′

=
1

ω2
Ẍ, ω =

√

ksp
m

, (54)

and using the following parameter definitions

γK =
ksp
kc

, γL =
x0
r0

, γI =
xI
x0

. (55)

The parameter γK characterizes the ratio of the stiffness of the system with respect to the
static contact stiffness. The static contact stiffness kc = 36 · (4/13)4/3 ·

(
ǫ/r20

)
is defined as

the critical contact stiffness corresponding to static adhesion (Sauer, 2011a). The parameter
γL characterizes the range of adhesion. As the value of γL increases the range of interaction
of the moving mass with the fixed mass decreases. The parameter γI characterizes the ratio
of initial position of the moving mass with the equilibrium position of the spring-mass system
alone. With the preceding definitions, the nondimensionalized equation is written as

X
′′

+ (X − 1) − α0γ
−1
K

γ8L

(
γ−6
L X−13 − X−7

)
= 0 , (56)
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where α0 = (1/3) · (13/4)4/3. However, when the internal energy is not considered (Fig 2(b))
i.e., term 1 is dropped in Eq. (53), the nondimensionalized equation is obtained by defining

X
′′

=
1

ω2
Ẍ, ω =

√

kc
m

. (57)

The definitions for γL and γI remain unchanged. The nondimensionalized equation is then given
by

X
′′ − α0

γ8L

(
γ−6
L X−13 − X−7

)
= 0 . (58)

5.1 Numerical Analysis

In this section, the numerical behavior of the problem shown in Fig (2) is investigated using the
proposed temporal discretization scheme, see section 4 and based on Eq. (44). In the discussions
that follow this scheme is referred to as Proposed DG scheme. First, the performance of the
proposed temporal discretization scheme discussed in section 4 is compared with other schemes.
Then, the effect of the parameters γI , γK , and γL on the solution is investigated. A study to
determine the time step required to attain a specified error in energy for a range of values of
γI , γK , and γL is carried out in the end.

5.1.1 Performance of various schemes.

First, the performance of various temporal discretization schemes is assessed for the two cases
shown in Fig. 2. The result for the case when Gauss quadrature rule is used to perform
integration of Eqs. (33) and (34) is also included. It is referred as Proposed SQ scheme in
further text. For each case the value of γI , γL, and γK are chosen as 3, 1, and 1 respectively.
This case corresponds to impact dominated problem, see section 2.2 and appendix A for details.
For each scheme, the logarithm of relative error in the computed energy, Eerr, is studied. It is
defined as

Eerr := log10

[
E0 − En

E0

]

, (59)

where E0 and En are the energies at the start and at time t = tn respectively.

Figure (3) shows the variation of Eerr with time for the different schemes. It is seen that the com-
posite scheme exhibits large error. Newmark’s scheme shows higher error during impact phase
but regains some of its accuracy once the impact is over. The energy-momentum conserving
schemes i.e., Proposed DG and Proposed SQ schemes, exhibit very small error. Table (1) shows
the maximum error obtained for 2 impacts using various schemes. The error corresponding to
a third case where only internal energy i.e., Π = Πint is considered, is also included. It can
be seen that incorporation of contact greatly reduces the accuracy of collocation based schemes
i.e., Newmark, Bathe schemes while it has very little influence on the accuracy of momentum
based schemes.

5.1.2 Effect of γI , γK, and γL.

First, the effect of the parameters used in the nondimensionalization of Eq. (53) on the solution is
studied using the Proposed DG and Newmark scheme. Both the internal and contact energies
are considered (Fig. 2(a)). We refer to the appendix A for a discussion on the selection of
values for γI , γK , and γL. Five different values each for γI , γK , and γL are chosen for the
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Figure 3: Variation of error Eerr over time for all the schemes. Figure (a) is obtained using the
linearized Eq. (56) while Fig. (b) is obtained using the linearized Eq. (58).

Table 1: Maximum error in energy obtained using different schemes.
Temporal scheme Eerr Eerr Eerr

(Π = Πint + Πc) (Π = Πc) (Π = Πint)

Newmark (Newmark, 1959) −4.14 −2.53 −10.57

Bathe (Bathe, 2007) −4.44 −2.83 −10.00

Proposed SQ −13.72 −11.09 −13.94

Proposed DG −13.62 −11.09 −14.02

simulation. They are: γI = [0.50, 0.90, 1.40, 3.00, 10.00], γK = [0.50, 0.75, 1.00, 3.00, 10.00],
and γL = [1.00, 1.10, 1.20, 1.30, 1.40] respectively.

Figure (4) shows the maximum Eerr for the Newmark and Proposed DG schemes for three
different values of γI . In all cases, the error for Newmark’s scheme is higher than for the
Proposed DG scheme. It is observed that the maximum error in not much affected by either
γL or γK for both the schemes for γI = 0.90 and γI = 1.40. Also, the maximum Eerr lies in
between −3.00 and −14.00 for both the schemes. The plot of the maximum Eerr for γI = 0.50
is shown in Fig. (4(c)). It can be seen that as the value of γL or γK goes down, the maximum
error of both the schemes increases. The increase in the error is more for the Proposed DG
scheme.

Next, we study the effect of γI , γK , and γL on the time step required to attain a specified error
in the total energy. The Proposed DG scheme is used for temporal discretization. Figure (5)
shows the log plot of the maximum time step required to attain an error of Eerr ≤ −6.00
for γI = 0.90 and γI = 1.40. The criterion proposed in section 2.2 is used to identify each
case as either impact dominated, adhesion dominated or neither. The points have been marked
accordingly on the surface. It can be seen that some values correspond to adhesion energy
dominated cases (•) while some are impact energy dominated cases (◦). The cases where the
internal energy dominates the solution are left unmarked. The case for γI = 0.50 is not shown
as all the cases are impact dominated. It can be seen that for γI = 0.90 as the value of γK
increases the time step required to attain a specified error increases. However, for γI = 1.40
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(a) γI = 0.90 (b) γI = 1.40

(c) γI = 0.50

Figure 4: Plot of maximum Eerr for ∆t = 0.001 [ω−1] for the case Π = Πint + Πc. The
parameters γI , γK , and γL correspond to the initial position of moving mass, adhesion strength,
and length scale respectively. The light color surface is for Newmark scheme and the dark color
surface is for Proposed DG scheme.

there is very little effect of γL or γK on the required time step. Hence, the proposed scheme is
equally good for all the values of γL and γK .

5.2 Physical Analysis

In this section, several physical properties of the problem shown in Fig (2) are discussed. The
Proposed DG scheme is used for all numerical simulations. The value of γI , γL, and γK are
chosen as 3, 1, and 1 respectively. First, the variation of different energies over time is studied.
Then the principal equivalence of the two interaction potentials discussed in section 2.1 (i.e.,
Eqs. 8 and 10) is shown.
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Figure 5: Log plot of maximum time step ∆t required for achieving Eerr ≤ −6.00 (Π =
Πint + Πc). The black points (•) denote the adhesion energy dominated cases while the white
points (◦) denote the impact energy dominated cases. The cases which are dominated by internal
energy are left unmarked.

5.2.1 Phase space plot.

First, the phase space plots for both the cases (Fig. 2) are shown in Fig (6). It can be observed
that when only the contact energy is considered (Π = Πc), the phase space plot differs remark-
ably from that when only internal energy is considered (Π = Πint). However, when both the
internal and the contact energies are considered (Π = Πint + Πc), the effect of adhesion is felt
only near the equilibrium position. The effect of adhesion is marked with arrows. When the
moving mass passes to the repulsion zone i.e., impact phase, the proposed augmentation to the
Proposed DG scheme is able to capture the highly nonlinear behavior very accurately for both
the cases.

5.2.2 Variation of different energies over time.

The variation of the energy fractions (normalized by maximum kinetic energy) over time is
shown in Figs. (7) and (8) for the two cases shown in Fig. 2. It is observed that for the first
case (Fig. 7), the fraction of adhesion energy Πadh (as discussed in section 2.2) is very small
compared to the kinetic, potential, or impact energy Πrep for most of the period. For clarity,
the zoomed view of Fig. (7(a)) is shown in Fig. (7(b)) for one particular cycle of interaction.
Hence, this case is classified as an impact dominated problem (see section 2.2 for discussion).
However, when only the contact energy is considered (i.e., Π = Πc) the fraction of adhesion
energy Πadh is equally large when compared to other energies i.e., the kinetic, and the impact
energy Πrep, see Figs. (8) and (8(b)). Hence, this case is equally dominated by both adhesion
and impact.

5.2.3 Comparison of two different interaction models.

In this section, the two interaction models mentioned in section 2.1 are applied to second case
(i.e, Π = Πc, see Fig. 2(b)). The aim is to show that the current analysis and its conclusions
are general and apply equivalently to the two kind of potentials introduced. Therefore, the
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Figure 6: Phase space plot. The effect of adhesion on the system is marked with arrows. It can
be seen that adhesion is important only when the moving mass is near to the equilibrium line.
When Π = Πc, the moving mass takes a long time to approach the equilibrium line due to the
weak attraction at great distance.

exponential cohesive zone (CZ) model is scaled and shifted so as to match as closely as possible
to the Lennard-Jones (LJ) potential (Eq. 9). The criterion used are: (a) the shape of traction
curve, (b) position of equilibrium point, and (c) the critical stiffness of the potentials. Then,
following identical procedure, the nondimensionalized equation for the exponential cohesive zone
model (Eq. 10) is written as

X
′′

+ X γL exp (−XγL) = 0 , (60)

where X and γL have been defined in Eqs. (54) and (55) respectively. The value of γI and
γL are chosen as 3 and 8.33 respectively. The force-gap plots for the two models are shown in
Fig. (9(a)). The corresponding phase space plot for the two models is shown in Fig. (9(b)).
It can be seen that the two responses are similar. However, the CZ model has lower velocity
than the LJ model for the same position. This is since is the CZ model goes asymptotically
to zero faster than LJ model. Hence, the moving mass experiences smaller attraction force for
CZ model for large distance and accelerates slowly. However, the overall nature of the response
obtained using the two models is similar which establishes the general nature of the formulation.

5.2.4 Effect of strong and weak adhesion.

Finally, the effect of strong and weak adhesion is studied using the CZ model. We now also
consider the case with γL = 1. The force gap plot for the CZ model for the two set of
parameter values is shown in Fig (10(a)). It should be noted that the equilibrium position and
the value of maximum adhesive force remain same. However, now the adhesion energy has been
increased significantly and the repulsion energy has decreased. The phase space plot is shown
in Fig. (10(b)). It can be seen that the moving mass has higher velocity for the same position
for strong adhesion. This is since the adhesion energy is now much more than the case with
weak adhesion. However, in the repulsion phase, the mass point moves much closer to the fixed
mass point for the case with strong adhesion as the repulsion energy is much lower.
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Figure 7: Variation of the different energy fractions over time using the Proposed DG scheme
considering Π = Πint + Πc. The plot is normalized by maximum kinetic energy and ω of
Eq. (54).
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Figure 8: Variation of the different energy fractions over time using the Proposed DG scheme
considering Π = Πc. The plot is normalized by maximum kinetic energy and ω of Eq. (57).

6 Numerical Example 2: Analysis of multi degree of freedom

adhesion problem

In this section, analysis of a multi degree of freedom adhesion problem is considered, see Fig-
ure (11). The diameter of the ball is D = 10 L0 (L0 = 1 nm) and the initial separation is
taken as h0 = 2 L0. The material parameters µ and Λ are taken as 0.8333 GPa and 0.5556
GPa (E = 2 GPa and ν = 0.2) respectively. The density of the ball is taken as 1000 kg/m3.
The ball is initially at rest and the interaction is assumed to be governed by the interaction
potential Φℓ given in Eq. (8). The traction is then given by Eq. (7). In the present work a
normalized form of Eq. (7) is used. For normalization of Eq. (7), we first define

T̄ k =
T k

E0

, r̄s =
L0

rs
, (61)

where E0 and L0 are the characteristic energy density (or stiffness) and length scale of the
problem respectively. The normalized equation corresponding to Eq. (7) is written using the
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Figure 9: Comparison of LJ potential given by Eq. (9) with γL = 1 and exponential CZ model
given by Eq. (10) with γL = 8.33 when only the contact energy is considered i.e., Π = Πc.
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Figure 10: Effect of adhesion using the exponential CZ model given by Eq. (10) when only the
contact energy is considered i.e., Π = Πc. For strong adhesion: γL = 1 and for weak adhesion:
γL = 8.33.

normalization procedure discussed in Sauer and Li (2007), which leads to

T̄ k =

[
c1
r̄9s

− c2
r̄3s

]

np = T̄knp , (62)

where the constants c1 and c2 are given as

c1 =
π

45γW γ9L
, c2 =

π

3γW γ3L
. (63)

The parameters γL = L0/r0 and γW = E0/w0, where w0 = AH/2π2r30, characterize the scale
and strength of adhesion. We refer to Sauer and Li (2007) for detailed discussion on γL and
γW . Two different cases are considered: (i) γL = 2.5, γW = 25, and (ii) γL = 1, γW = 100.
Case 1 corresponds to parameters of gecko adhesion (Sauer, 2009) while case 2 corresponds to
very small adhesion energy. The time step for the analysis is taken as 0.001 T0 (T0 = 1 ns).
Three different initial mesh configurations for the ball are considered, see Table 2.
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Figure 11: Initial configuration for study of interaction of a soft ball with a rigid surface. The
interaction is governed by the interaction potential Φℓ according to Eq. (8). The diameter of
the ball is taken as D = 10L0 and the initial separation is taken as h0 = 2L0 + req where
L0 = 1nm and req is the equilibrium distance corresponding to the interaction potential Φℓ.
The ball is assumed to be at rest at t = 0.

Table 2: Finite element mesh details for soft ball impact with a rigid surface.
Mesh No. No. of elements No. of dofs

1 48 114

2 192 418

3 768 1602

Before we present the results, it is mentioned again that ”Proposed DG scheme” denotes the
temporal discretization scheme based on discrete gradient, see section 4 and Eq. (44). The
phrase ”Proposed SQ scheme” is when standard Gaussian quadrature rule is used for evaluating
the integrals in Eqs. (33) and (34). The initial and deformed configuration of the system is shown
in Fig. (12) for the finest mesh i.e., mesh 3. The contour of the first invariant of the stress is also
shown. Figure (12(b)) shows the deformed configuration at time t = 0.28T0. The adhesion
zone is marked. In this zone, the material particles are attracted towards the rigid surface.
The zone of negative stresses is called the impact zone. In this zone the material particles are
repelled from the rigid surface. A sharp transition from impact zone to adhesion zone can also
be seen. For more discussion on the characteristics of these zones we refer to references Sauer
and Li (2007); Sauer and Wriggers (2009).

6.1 Conservation of the total energy and total angular momentum

The performance of various temporal integration schemes is investigated. Figure (13) shows the
variation of Eerr (see Eq. 59) over time for case 1 and case 2 using various temporal discretization
schemes discussed in section 4. Mesh 1 is used for the analysis. It is observed that the Newmark
scheme diverges after some time for case 1. The composite scheme exhibits large error. It should
be noted that for case 2 (Fig. 13(b)), the Proposed DG scheme does not exhibit any error within
the machine precision. However, for case 1 (Fig. 13(a)), the Proposed DG scheme exhibits some
error in the energy but still has the lowest error among all the schemes. Also, it should be noticed
that the accuracy of each scheme, particularly for case 1, is now much lower when compared to
the problem considered in section 5. This is because the ball is considered as a continuum rather
than a single degree of freedom system. Hence, dynamic effects like stress wave propagation and
higher mode excitation now affect the solution. Figures (13(c)) and (13(d)) show the variation
of logarithmic norm of total angular momentum with time for different schemes. It should be
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Figure 12: Deformed configuration of the ball for the Proposed DG scheme using mesh 3 and
∆t = 0.001T0 (case 1: γL = 2.5, γW = 25). The adhesion zone has been marked with arrow.
The first invariant of the stress is shown. The stress values are normalized by E0. A sharp
transition from impact zone i.e., where stress is negative, to adhesion zone i.e., where stress is
positive, can also be seen.

noted that the ball is initially at rest so that the norm of total angular momentum, ‖Gn+1‖, is
zero. The wild fluctuations of the total angular momentum in all cases is due to the non-linear
contact potential. Now for weak adhesion, all schemes show similar result. However, for the
case of strong adhesion the Proposed DG scheme shows higher error. It is pointed out that for
finer meshes, i.e. Mesh 2 and Mesh 3, the Proposed DG scheme performs slightly better than
the other schemes.

Next, the Proposed DG scheme is used to analyze the problem for different time steps and mesh
discretizations. The interaction parameters are taken as γL = 2.5, γW = 25. The objective
is to study the effect of time step size and mesh discretization. Figure (14(a)) shows the plot
of Eerr with time for three different time steps. It is seen that for time step ∆t = 0.0001T0

the error is minimum while it is maximum for ∆t = 0.001T0. This may be because as the
time step is lowered, spurious higher modes are excited. Another source of this behavior is
because the value of ‖∆xk‖ in Eq. (44) approaches a very small value. Division by these small
values will also lead to loss in accuracy. Some discussion on the numerical limit behavior of
the term ‖∆xk‖ has been discussed in Mohr et al. (2008). Figure (14(b)) shows the error for
three different finite element mesh discretizations. It is observed that Eerr goes down with
mesh refinement. Figures (14(c)) and (14(d)) show the variation of logarithmic norm of angular
momentum with time for different time steps and mesh. Lowering of the time step results in a
behavior similar to that observed in Fig. (14(a)). As in case of energy error, refining the mesh
leads to better accuracy as observed in Fig. (14(d)).

6.2 Variation of contact force and contact gap

In this section, the variation of the total contact force and the distance between the bottom
node from the rigid surface is investigated for different time steps and mesh discretizations. The
total contact force is given as the sum of all the finite element forces on the contact surface. It
is defined as

Pc :=

nn∑

N=1

fNc . (64)
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(b) Weak adhesion: γL = 1.0, γW = 100
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(c) Strong adhesion: γL = 2.5, γW = 25

0 1 2 3 4 5
−16

−14

−12

−10

−8

−6

−4

−2

0

Time [T
0
]

lo
g 10

(|
|G

 n+
1||)

 

 

Newmark
Bathe
Proposed SQ
Proposed DG

(d) Weak adhesion: γL = 1.0, γW = 100

Figure 13: Variation of error Eerr and log10(‖Gn+1‖) over time for various schemes (using mesh
1 and ∆t = 0.001T0). In (a), it can be seen that the Newmark scheme diverges after some
time. In (b), the Proposed DG scheme shows an error on the order of machine precision. Hence,
it is absent from the plot.

The distance between the bottom node of the ball from the rigid surface at time t is defined as

h(t) := rs(t) + req , (65)

where rs(t) is the contact gap and req is the equilibrium distance corresponding to the interaction
potential Φℓ.

First, the variation of vertical component of Pc over time is analyzed, see Fig. (15). Impact
occurs when the contact force changes from adhesion to repulsion (i.e., when the value changes
sign). The impact ends when the contact force changes from repulsion to adhesion (i.e., when the
value goes from negative to positive). Different material points will undergo impact at different
instances in time. Hence, Fig. (15) shows an overall behavior. First, the effect of the time step
is analyzed. Figure (15(a)) shows the plot of the total contact force with time for different time
steps. It is seen that for all the time steps, the response is similar up to t < 0.40T0. It is
also observed that as the time step goes down, more fine scale oscillations are observed in the
response, see Fig. (16). Again, this is because as the time step is lowered, first, higher modes
get excited. Secondly, the numerical limit behavior for very small values of term ‖∆xk‖ (see
Eq. (44)) also leads to a loss in accuracy. This shows that after the first 2 impacts, the solution
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(c) Different time steps (using mesh 1)
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Figure 14: Variation of error Eerr and log10(‖Gn+1‖) over time (γL = 2.5, γW = 25) for the
Proposed DG scheme. It should be noted that when the error is less than machine precision, it
is not shown. The vertical lines in (a) and (b) show the jump in error from machine precision
values to higher values.

of the problem no longer represents the actual behavior. Hence, no specific conclusions should
drawn beyond a certain time. However, it does show the long time stability characteristic of the
proposed scheme. One possible remedy to alleviate this behavior is to incorporate some form
of damping into the system. Another possible remedy to address this kind of numerical limit
behavior has been discussed by Mohr et al. (2008). Yet another remedy can be to use schemes
which dissipate energy of the higher modes. This will, of course, lead to overall loss in energy of
system. Figure (15(b)) shows the plot of the total contact force with time for the three different
finite element mesh discretizations. It is seen that up to t < 0.25T0, the response is similar.
However, for t > 0.25T0, the response for each mesh is different. Again beyond the first impact
no specific conclusion, other than the stability of the proposed scheme, should be drawn.

Figure (17(a)) shows the plot of h over time for different time steps. It is seen that as the time
step is reduced, the number of impacts of the ball with the rigid surface also increases. The
response for ∆t = 0.0001T0 and ∆t = 0.00001T0 are quite close up to t < 0.60T0. Also, it
is observed that for smaller time steps the oscillation decreases more rapidly. Figure (17(b))
shows the plot of h over time for the three different mesh discretizations. The response for finer
meshes is only similar up to t < 0.40T0. Again, beyond the first 2 impacts the solution for
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Figure 15: Variation of vertical component of Pc over time for the Proposed DG scheme (γL =
2.5, γW = 25 and using mesh 1). Positive contact force shows adhesion while negative value
shows repulsion.
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Figure 16: Zoomed plot of the variation of vertical component of Pc over time for the Proposed
DG scheme at two different time range (γL = 2.5, γW = 25 and using mesh 1). Fine scale
oscillations appear for decreasing ∆t.

each case differs from each other appreciably. With these preceding studies, it is observed that
the algorithmic energy conservation alone does not ensure correct results of the contact force
and the distance, (see Ortiz, 1986).

6.3 Application of enriched contact finite elements

Here, we present a study on using enriched contact finite elements proposed recently, (see
Sauer, 2011b). Figure 18 shows the performance of the proposed scheme for various contact
finite element formulations. The mesh used is Mesh 2 with ∆t = 0.001T0 and the adhesion
parameters are set to γL = 2.5, γW = 25. In the figure, Q1C1 is the bilinear quadrilateral
element with linear interpolation of the displacement field at the contact interface. Secondly,
Q1C2 is the quadrilateral element enriched with one node on the contact surface leading to
quadratic interpolation of the displacement field. Thirdly, Q1C4 is the quadrilateral element
enriched with three nodes on the contact surface leading to fourth order approximation of
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Figure 17: Plot of height h(t) over time for the Proposed DG scheme (γL = 2.5, γW = 25).

the displacement field on the contact interface. Finally, Q1CH is the quadrilateral element
where on the contact interface, apart from the nodal displacements, their derivative is also
interpolated. Figure 18(a) shows the variation of error Eerr over time. It is also pointed out,
without elaborating further, that for the Newmark scheme, the divergence behavior observed
in Fig. (13(a)) is not observed when using the enriched contact elements. It can be seen that
the error in the energy goes down when enriched contact finite elements are incorporated.
However, no specific trend is observed for the different enriched contact elements. The reason
for the improved performance, when using the enriched elements, is that the contact forces are
captured more accurately. Figure 18(b) shows the plot of h over time for the various contact
finite element formulations. It is seen that the response of the different enriched elements is
similar for the first two impacts after which they start to differ. As discussed earlier, beyond
the second impact no specific conclusions should be drawn.
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Figure 18: Variation of error Eerr and height h(t) over time for the Proposed DG scheme with
various contact finite elements using mesh 2 (∆t = 0.001T0 and γL = 2.5, γW = 25).
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7 Conclusions

In the present work, a new energy-momentum-conserving temporal discretization scheme is pro-
posed for the computation of adhesive contact problems. A contact criterion is also proposed
to distinguish between adhesion-dominated and impact-dominated contact behavior. The pro-
posed scheme adds very little to the computational cost. The performance of the proposed
scheme is compared with both parameter-based and parameter-free families of collocation based
schemes for single degree and multi degree of freedom systems. It is found that the proposed
schemes shows major accuracy gains in conserving energy. However, it is found that reducing
the time step or mesh leads to different solution beyond the first few impacts. Hence, energy
conservation alone does not ensure correct and convergent results. Finally, it is shown that the
use of enriched contact finite elements leads to improved behavior without the need to refine
the bulk of the domain. However, beyond the first few impacts the solutions differ for each
case. The presented work is highly relevant to general adhesion and debonding problems which
will be studied in the future. Further considerations are incorporation of the frictional contact.
To damp the unwanted physical modes an appropriate form of damping, numerical or physical,
will also be studied in the future.

Appendix A: Discussion on selection of values for γI, γK and γL

In this appendix, we present the fact that at least for energy-conserving single particle systems,
it is possible to know a priori whether the problem will be an adhesion dominated problem,
impact dominated problem or internal energy dominated problem. For single particles, the total
energy (i.e., the Hamiltonian) at time t = 0 can be written as (assuming the distance of the
particle from the wall at t = 0 is such that radh > req)

E0 = Πint (t = 0) + Πadh
c . (A.1)

Note that at time t = 0 it is assumed that there is no kinetic energy. Now, the total energy at
time t = t∗, where t∗ is the time at which rs = rrep, is given by

Et∗ = Πint (t = t∗) + Πrep
c . (A.2)

Again, it is pointed out that at t = t∗, the kinetic energy is 0. Now, balancing total energy at
time t = 0 and at time t = t∗, we get

Πint (t = t∗) + Πrep
c = Πint (t = 0) + Πadh

c . (A.3)

It should be noted that the values at t = 0 are known, whereas the quantities at t = t∗ depend
on rs = rrep at t = t∗. Now, the above equation is a nonlinear equation in rrep which can be
solved using an iterative scheme. Now, we define

Πmax
int = max (Πint (t = 0) , Πint (t = t∗)) , (A.4)

Πmax
c = max

∀ t

(

Πrep
c , Πadh

c

)

, (A.5)

Based on the above definition, the following classification can be made as shown in Table A.1.
It is pointed out that the factor 20 is chosen arbitrarily.
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Table A.1: Classification of a problem into adhesion or repulsion dominated problem.
S. No. Condition Contact classification

1. Πrep
c > Πadh

c and Πmax
int < 20×Πmax

c impact dominated problem

2. Πrep
c < Πadh

c and Πmax
int < 20×Πmax

c adhesion dominated problem

3. Πmax
int > 20×Πmax

c internal energy dominated problem
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